微机械惯性传感器检测平台的设计与应用
较好的效果。
尽管在电荷放大电路中,可以忽略掉输入电容及反相输入端对地的分布电容,但是在检测微小电容变化时,输出还是有很大的衰减。这是由放大器输入输出端分布电容Cio造成的。当载波电压频率大于1/(2πRfCf)和小于放大器的截止频率时,输出电压Vout应该表示为:
检测平台的系统构成及工作原理
该系统的工作原理如图5所示。对惯性传感器施以适当的激励信号后,传感器的动片即处于振动状态,上下极板间的电容发生周期变化,采用电荷放大器电路将该信号提取出来,经交流放大、解调后通过A/D转换变成数字量采集到微机中,观察传感器的输出响应,为下一步利用软件方法分析微机械惯性传感器的时域、频域特性打下基础。
3.1 激励信号发生器
根据微机械轮式振动陀螺仪的工作原理,最多需要4路激励信号。激励信号为正弦波,每两路相位相反。为了测量陀螺仪的频率特性,需要不断改变激励信号的频率。目前不同设计的陀螺仪谐振频率在几百赫兹到10千赫兹之间,激励信号也需要在这个范围内进行调节。另外,陀螺仪的驱动力矩等于驱动信号的交流分量与直流分量的乘积,所以还要施加正或负的直流偏置,使陀螺能处于正常工作状态。交流相位和直流偏置组合见表1。
一般的RC振荡电路生成的正弦波频率靠改变R、C值来调节,不能连续大范围调节。所以,设计中采用数字方法合成模拟波形,其原理见图6。图6中8254为软件可编程计数器。其包含3个独立的16位计数器,计数最高频率可达8MHz,设计中输入3MHz的时钟,将2个计数器串连使用,这样可以增加频率控制范围。8254产生的方波信号作为后面并行计数器的计数脉冲输入。并行计数器由2片74LS161组成8位二进制循环计数器。74LS161计数到最大值时会自动清零,重新开始计数,其输出可作为E2PROM 2817A的地址信号(即每个正弦周期内采样点数为256个)。2817A的数据读取时间为150ns。设计电路时将它的片选和读信号均设为有效,以提高数据读取速度。D/A转换采用DAC-08电流输出型D/A转换器。电流输出时间85ns,放大器采用高速高精度运放OP-37。同理,D/A转换器的片选和转换开始信号总为有效,其输出跟随输入变化,提高转换速度。实验结果表明,此信号发生器完全可以生成10kHz以内可调频的正弦波。而且使用可编程计数器8254,输出正弦波的频率可以用软件方法调节。如果想输出非正弦波形,只要修改E2PROM的数据,就可以输出任意形状的周期波型。
3.2 低通跟踪滤波器
数字信号发生器具有控制灵活的优点,但是输出信号不够平滑,其中会有台阶波。在对信号要求比较高的场合,还需要进行滤波。本设计中信号的频率变化范围很大:几百赫兹到10千赫兹。为了进一步提高信号质量,采用AD633模拟乘法器构成低通跟踪滤波器,其原理如图7。
通带的截止频率是由电压EC控制的,输出是OUTPUTA,截止频率:
OUTPUTB处是乘法器的直接输出端,截止频率与RC滤波器相同:
这种滤波器结构简单,没有开关电容,噪声小,一般采用数模转换器控制EC, 控制通带频率也比较容易。
3.3 交流放大器
微机械惯性传感器在施加激励信号后,即处于振动状态。传感器有差动微电容量变化C0+ΔC和C0-ΔC。采用电荷放大器电路提取出ΔC,此电压信号仍然很弱,需要进一步放大处理,于是采用图8所示的交流放大器。
交流放大器由4个放大倍数为-1、-2、-5、-10的运算放大器级联组成,进一步放大被测信号,同时调整幅值以便适应解调器的输入。图8中的开关选用ADG211模拟开关,通过控制模拟开关的开合,可以任意选择某级或某几级放大器参加工作,实现对放大倍数正负1、2、5、10、20、50、100的整倍数调整。例如,将模拟开关S0、S2、S8、S13闭合,其他开关全部打开,交流放大器的总放大倍数即为:(-1)×(-2)×(-10)=-20。
3.4 数据采集系统
使用计算机总线,与外设之间必须有接口。本系统采用双端口RAM作为数据缓存。先将信号采样并存储其中,然后成组地向主机传送,从而有效地发挥了主、从资源的效率,且设计也相对简单。
3.4.1 系统工作原理
系统基本组成原理如图9。主要有双端口RAM、逻辑控制模块、A/D转换器组、计算机接口。主机通过接口启动逻辑控制模块后,CPU资源向其他请求开放,逻辑控制模块发控制信号启动A/D转换器并进行采样,并将转换结果存入双端口RAM。当RAM中的数据达到一定数量时,逻辑控制模块向计算机发出中断请求。主机接到请求后进入中断服务程序,向逻辑控制模块发出命令,决定是否继续采样,并将RAM内的数据读入内存。
3.4.2 硬件设计
本设计使用Cypress公司的CY7C136(2k×8bit)双端口RAM。其两个端口都有独立的控制信号、片选CE、输出允许OE和读写控制R/W。这组控制信号使得两个端口可以像独立的存储器一样使用。使用这种器件要注意当两个端口访问同一个单元时,有可能导致数据读出的结果不正确。解决这个问题的方法有两个:一种是监测busy信号输出,当检测到busy信号有效时,就使访问周期拉长,这是从硬件上解决;另一种方法是软件上保证两个端口不同时访问一个单元,即将双端口RAM进行分块。本系统采用后者,将busy信号输出通过上拉电阻接到电源正极。
在系统中,逻辑控制模块的作用非同小可,是控制采样、存储、与计算机接口的核心。本系统为了方便对采样速率等参数进行设置,在该模块中采用了MCS-51单片机。这样可以通过编程设定采样速率。
与主机的信息交换包括:
(1)接收主机控制信号,以决定是否开始采样;
(2)在存储区满后,向主机发中断请求。
本系统使用AT89C51的地址总线来选通RAM的存储单元,对其进行写操作,将采样结果存入相应的单元。
- 传感器技术中的阻抗测量方法(03-23)
- 电桥测量基础(06-10)
- 适用于微型仪器的精密电容传感器接口(09-06)
- 基于PIR的移动检测系统的实现(11-03)
- 基于霍尔传感器的直流电机转速测量系统设计(11-14)
- NPXI智能传感器的TPMS系统设计(11-29)