低功耗制造性测试的设计-第二部分
时间:01-29
来源:3721RD
点击:
钟由一个或多个片上时钟控制器所管理)。
图5所示设计具有受ATPG控制的7个时钟域。值得注意的是,用于压缩的物理模块的分割不需与时钟域一致,以确保测试期间的低功率操作。设计中的所有触发器共享相同的扫描启动,从而使得所有的故障包括域间故障能一次性地被ATPG发现。这种简单、高度自动化的流程可以产生紧凑格式的低功率向量集。
图5:具有7个时钟域的设计。
本文小结
本文介绍了制造测试过程中引入的动态功耗如何反过来影响被测器件的性能。测试中过高的峰值功耗会增加延迟并导致不可预料的测试结果,而测试期间中过高的平均功率所引起的热问题则会损坏器件。上述两个功率问题如果处理不正确将增加制造商的成本,而使用最先进工艺制造的大规模SoC尤其容易受这些问题的影响。
不仅因为这些设计中使用了大量的触发器,同时还因为需要用更高时间分辨率的实速测试来检测小延迟故障。为了解决这些问题,设计师们正在整合测试自动化的先进成果和DFT方法来创建低功率制造测试。本文重点介绍了两种创新性技术,它们可将开关动作降低到与器件任务模式工作时相当的水平。这两种方法的主要区别在于设计师将功率预算并入DFT过程中的方式。
作者:Chris Allsup
市场经理
测试自动化产品部
Synopsys公司
- 利用DFT规则提高ASIC错误检测范围(11-12)
- 低功耗制造测试的设计-第一部分(01-29)
- 生产制造中的低功耗测试方法(02-27)
- 复杂系统级芯片的软件/硬件协同验证(11-06)
- 采用多内核无线虚拟系统原型的系统级调试(11-07)
- 嵌入式测试方案及高速测试技术(03-10)