大幅加速流程的无线测试新方案盘点
和伪信号。
三阶截取(TOI):
IMD也是一项常见测试,用以测量放大器中的非线性量。把两个测试信号加载在放大器上,对输出进行测量。f1和f2两个基频信号混合,产生信号和与信号差,以及更高阶的产物。信号和与信号差因为是二阶产物,通常很易于滤除。但所谓的三阶产物,即2f1 - f2与2f2 - f1,却很难滤除,因为它们与两个原始信号非常接近(图2)。
这些三阶产物可以通过确定TOI来测得。该测试也被称为IP3或IM3,可间接测得TOI的幅度。在图1所示的输出功率与输入功率的关系图中,主曲线的斜率是一。根据定义非线性度的三角式的数学特性,TOI产物的曲线斜率为三。
需注意,该曲线与主要线性图的交叉点位于放大器的压缩点之上。这是因为无法直接测量TOI。线性图和TOI之间的差距越大,失真越少,互调产物越小。TOI测试也用于接收器。
误差向量幅度(EVM):
EVM是对调制质量的测量。它表示发射信号与理想信号的接近程度。由于大多数调制方法都采用信号为同相(I)和正交(Q)格式的数字技术(BPSK、QPSK、QAM、8PSK等),故输出可用星座图来表示(图3)。
星座图上的每一个点都代表一个两位或更多位的输出。
EVM通常表示为误差向量的长度与理想参考向量的长度之比,一般被规格化为最大的符号幅度,并用百分比来表示。
EVM = (误差向量长度/最大参考向量长度) Ω 100
邻近信道功率比(ACPR):
ACPR是发射信道平均功率与相邻频率信道平均功率之比,让发射器信号通过接收器的滤波器组至邻近射频信道频率而测得。有时被称为邻近信道泄漏比(ACLR),它测量有多少信号功率泄漏到邻近信道上。
ACPR最常用于CDMA设备,其信号通常被下行转换为中频(IF),被数字化并进行快速傅立叶变换(FFT),然后在频域显示。最后得到的图可以显示出相邻信道功率距离主信号功率有多远(用dBm表示)。
接收器测试
接收器灵敏度:
在这项关键的接收器测试中,通常首先是把所需频率的信号馈入接收器前端,然后利用信号发生器衰减器或外部衰减器进行衰减,直到信号"跑频(drop out)。"一般会对"跑频"做一定的定义说明,比如意指接收器失锁(lose lock)的那一点。此外,还在信号中引入噪声以确定信噪比(S/N或SNR),这时信号不再可读。
一种确定灵敏度的可行办法是在接收器上进行比特误码率(BER)测试。把一种伪随机比特位格式调制到发生器产生的信号上,再馈送到接收器。对重新获得的比特位与接收到的解调后的比特位进行比较,就可以计算出比特误码率。信号输入幅度继续降低或噪声级提高,直到超过所需BER。
邻近信道抑制:
这种测试采用一个或多个信号发生器来产生所需信号以及一个或多个干扰信号。它测试接收器抑制邻近信道信号干扰的能力。
测试仪器的选择
有许多专业的RF测试仪器可供选择。其中最主要最常用的有任意波形发生器(AWG)、信号发生器、向量信号发生器、频谱分析仪、向量信号分析仪(VSA),以及功率计(图4和图5)。这些仪器对实现快速精确的测量至关重要。
向量发生器和向量分析仪都基于SDR架构,非常适合于现在的无线标准,也有益于测量速度的加快。这是因为SDR架构赋予了这些仪器很强的灵活性――利用额外的软件或固件可以它们被迅速地改变、更新与提高。
可编程的DSP和/或FPGA或ASIC在发生器中进行调制,在分析仪中进行解调、下行转换和解码。高性能PC机常常用于DSP,并内建于仪器内。可以把专业的软件或固件增加到发生器或分析仪中,将仪器设置为基于特殊无线电技术或无线协议进行测量(表2)。
示波器虽然不常用于射频测试,但在某些应用中仍大有作为。例如,Tektronix的DPO/DSA70000示波器就是UWB等极大带宽RF信号的理想平台。加上Tektronix的UWB软件,它可以全面测试流行的WiMedia UWB无线电及其它宽带无线设备(图6)。
大多数测试装置都需要适当的探针和电缆。应该始终使用制造商提供的匹配探针,并需使用带有正确接头的同轴电缆。其它大多数测试中常见的配件包括信号合成器或信号分配器、固定和/或可调衰减器以及隔离器。
作者:Louis E. Frenzel
通讯/测试编辑
《Electronic Design》
BPSK QPSK CDMA SDR QAM OFDM 相关文章:
- IEEE802.16-2004 WiMAX物理层操作和测量(09-16)
- 不同WiMAX无线环境下接入软交换IAD性能测试 (07-01)
- 如何利用通信系统测试中的高斯噪声(上)(01-13)
- CDMA2000 1x无线链路中QPSK调制的测量与净化(10-25)
- FPGA配合预失真技术的解调误码测试仪(07-19)