微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > IC测试原理解析(第四部分—射频/无线芯片测试基础)

IC测试原理解析(第四部分—射频/无线芯片测试基础)

时间:03-26 来源:EETCHINA 点击:

芯片测试原理讨论在芯片开发和生产过程中芯片测试的基本原理,一共分为四章,下面将要介绍的是最后一章。第一章介绍了芯片测试的基本原理,第二章介绍了这些基本原理在存储器和逻辑芯片的测试中的应用,第三章介绍了混合信号芯片的测试。本文将介绍射频/无线芯片的测试。

射频/无线系统会同时包含一个发射器和接收器分别用于发送和接收信号。我们先介绍发射器的基本测试,接下来再介绍接收器的基本测试。

发射器测试基础

如图1所示,数字通信系统发射器由以下几个部分构成:

CODEC(编码/解码器) 符号编码 基带滤波器(FIR) IQ调制 上变频器(Upconverter) 功率放大器

CODEC使用数字信号处理方法(DSP)来编码声音信号,以进行数据压缩。它还完成其它一些功能,包括卷积编码和交织编码。卷积编码复制每个输入位,用这些冗余位来进行错误校验并增加了编码增益。交织编码能让码位错误分布比较均匀,从而使得错误校验的效率更高。

符号编码把数据和信息转化为I/Q信号,并把符号定义成某个特定的调制格式。基带滤波和调制整形滤波器通过修整I/Q调制信号的陡峭边沿来提高带宽的使用效率。

IQ调制器使得I/Q信号相互正交(积分意义上),因此它们之间不会相互干扰。IQ调制器的输出为是IQ信号的组合,就是一个单一的中频信号。该中频信号经过上变频器转换为射频信号后,再通过放大后进行发射。

Figure 1. 通用数字通信系统发射器的简单模块图

先进的数字信号处理和专用应用芯片技术提高了数字系统的集成度。现在一块单一的芯片就集成了从ADC转换到中频调制输出的大部分功能。因此,模块级和芯片级的射频测试点会减少很多,发射器系统级和天线端的测试和故障分析就变得更加重要。

发射器的主要测试内容

信道内测试

信道内测试采用时分复用或者码分复用的方法来测试无线数字电路。复用指的是频率或者空间上的复用等。在时分多址(TDMA)技术中,一个信道可以定义为在一系列重复出现的帧里面特定的频段和时隙,而在码分多址(CDMA)技术中,信道定义为特定的码段和频段。信道内和信道外这两个术语指的是我们所感兴趣的频段(频率信道),而不是指频率带宽内信道的时隙或者码段。

发射器信道带宽是最先进行的测试,它决定了发射器发射信号的频谱特性。通过频谱的形状和特性可以发现设计上的许多错误,并能大概推算出系统符号速率的错误率。

载波频率测试用于测试可能引起相邻频段信道干扰或影响接收器载波恢复的频率误差。在大多数调制方式中,载波频率应处于频谱的中心。可以通过计算3dB带宽来判断中心频率。

信道功率测试用于测试有用信号在频率带宽内的平均能量。它通常定义为有用信号能量在信号频率带宽内的平均值,实际的测量方法随着不同的标准会有所不同。无线系统必须保证每个环节消耗的能量最少,这样的目的主要有两个:一是可以减少系统的整体干扰,二是能延长便携系统电池的使用寿命。因此,必须严格地控制输出功率。在CDMA系统中,为了达到最大的容量,系统总的干扰容限也严格限制了每个单个移动单元的功率。精确发射功率控制对系统的容量,覆盖范围和信号质量至关重要.

占用带宽跟信道功率密切相关,定义为给定总调制信号功率的百分比所覆盖多少频谱。

时间测试常用于TDMA系统中的突发信号测试。这些测试主要用来评估载波包络是否能满足预期的要求,它们包括了突发信号宽度,上升时间,下降时间、开启时间、关闭时间、峰值功率、发射功率、关闭功率以及占空比等。时间测试可以保证相邻频率信道之间的干扰以及信号开启或者关闭的时隙切换时的干扰最小。

调制品质的测试通常涉及到发射信号的精确解调并与理想的数学计算出来的发射信号或参考信号进行比较。实际的测量随着不同的调制方式和不同的标准会有不同的方法。

误差矢量幅度(EVM)是应用最广泛的数字通信系统调制品质参数,它采样发射器的输出端的输出信号,获得实际信号的轨迹。通常把输出信号解调后得到一个参考信号。矢量误差是指某个时间理想的参考信号与实际所测的信号的差别,是一个包含幅度分量和相位分量的复数。通常,EVM会采用最大的符号幅度分量或者平均符号功率的平方根。

I/Q偏置(固有偏置origin offsets)是由I/Q信号的直流偏置引起的,可能会导致载波反馈。

相位和频率误差测试用于等幅调制方式。通过采样发射器的输出信号并捕获实际的相位轨

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top