采用模块化仪器,对新兴音频和视频应用进行测试
器实现了高质量要求的视频测试。以音频测试为例,音频分析仪的测试内容包括:幅频响应、信号音质资料、RMS、Gain、信号串扰、总谐波失真、SINAD、总谐波失真加噪音、动态范围、声级测量等。
应用发展环境(ADE),如NI LabVIEW 和LabWindows/CVI软件在测试系统架构中起关键的作用。被用于开发测试测量应用的ADE具有非常丰富的功能,通过这些工具,测试系统开发者可以与多种仪器通信、整合测试项目、显示信息、与其他应用软件互连入数据库或图表生成等等。NI LabVIEW音频、视频工具包提供了一套灵活的音频视频测量和分析功能。以视频测试为例,采用模块化仪器的视频信号发生器,视频样式图示由软件设定,因而可以设计输出非理想信号来测试产品的鲁棒性能,如改变定时和电平,或是添加滤波器, 或是引入噪声。另外,通过高速数字化仪内置的视频信号触发功能,可以方便地从不同的消费电子产品如机顶盒、DVD和数字摄像机中获得视频信号,包括不同的视频格式:NTSC, PAL, SECAM以及标准高清电视,并可以根据需求添加新的测试项目。
不仅如此,基于LabVIEW发展环境,一些第三方厂商还提供更强大且专业的测试软件,如总部位于丹麦的MicroLEX (www.microlex.dk)公司,是一家NI的系统联盟成员,其视频测试软件产品VideoMASTER提供了完整的解决方案,具有功能强大的视频分析功能,适用于模拟视频信号,合成视频信号,S-video以及数字高清电视信号的测量分析。VideoMASTER 使用 NI 5122数字化仪、14比特、100 M采样率,并配备包含复合和S端子控制的两个通道的数字转换器。对于HDTV应用,MicroLEX还可以提供可选择的接线端子盒。图4是MicroLEX一个强大的视频分析工具。
图4: 由microLEX提供的一个强大的视频分析工具VideoMASTER。
应用实例
以下有两个应用案例来说明模块化仪器这种方案如何应对实际的挑战。
A,电视调谐器测试
挑战:为电视调谐器设计一种自动化的、节约成本的、省时的、可升级的完整功能的测试系统。
解决方案:通过NI LabVIEW软件和NI PXI-5671 VSG产生多种标准的RF电视测试信号,采用NI-PXI 5122高速数字化仪用于音频和视频参量测试,NI M-Series 数据采集卡(DAQ)在测试中控制调谐器的工作状态,以及TestStand软件实现上层的测试管理,并完成数据库交互和数据统计分析功能。如图5所示。
图5 电视调谐器的生产线测试
这是一个典型的音频视频以及射频测试应用。测试任务是执行一个模拟调谐器的生产线测试。通过使用高性能的模块化仪器和灵活开发的软件,电视测试样式能在任意的射频频道、功率水平、调制深度和电视信号标准中产生。高速的数字化仪对音频、视频质量实现高性能的测试。在测试程序中,10个非线形的视频测量和5个音频测量确保了每个产品符合客户的高测量质量需求。典型的视频测试包括同步和脉冲幅度、chroma/luma增益、差分增益和差分相位。典型的音频测试包括增益、噪声电平、信噪比和总谐波失真。
该测试方案通过软件修改能够轻松地扩展到数字电视标准。在音频视频信号产生部分,PXI-5671 矢量信号发生器有很强的软件定义无线电能力,还有高达2.7GHz的输出频率范围和20MHz实时宽带。通过软件设定,测试工程师能设置不同类型的数字编码和调制类型,同时也可以增加测试信号的失真度。在音频视频信号质量分析部分,14bit、100 MHz的PXI-5122拥有内置视频触发的数字化仪,能够为视频测试提供14位的分辨率和超过75分贝的无失真范围,其范围能够胜过当今绝大部分标准的视频分析器。本解决方案已经被国内外很多主要的电视公司采用。
与模块化仪器的方案相比,传统的台式仪器的测试方法需要一个音频/视频信号发生器、RF频率合成器、音频/视频分析仪、示波器和频谱仪等众多仪器才能实现测试目标。设备成本很高,测试时间也较长,此外对于传统仪器架构来说,支持新的电视标准非常困难。
B,蓝牙耳机测试
挑战:为蓝牙耳机产品终端测试设计一个综合的音频射频自动化测试平台,同时降低预算并节约测试时间。
解决方案:使用NI PXI-4461音频信号分析仪模拟产生音频测试信号,采集接收分析音频信号完成视频测试,用NI-5660矢量信号分析仪完成蓝牙射频测试,用数字万用表NI 4070实现基本电路的电流电压测试, 整个测试系统由一个PXI机箱的系统完成。如图6和图7所示。
图6:蓝牙耳机生产线终端测试的模块化仪器测试框图。
图7:蓝牙耳机生产线终端测试的软件操作界面。
随着通信和计算机技术的发展,低成本、低功
- 虚拟仪器:在开放架构基础上创建用户定义的测试系统(09-19)
- 什么是虚拟仪器?(10-23)
- 基于虚拟仪器技术的短波电台自动测试系统(10-23)
- 宽带多媒体网关测试方法研究(10-27)
- 基于虚拟仪器技术的航空机载电子设备自动测试系统(03-03)
- IC芯片表面标识自动识别虚拟仪器系统的设计 (05-11)