低功耗器件的“设计时测试”方法
制造测试中,这些电压区必须由扫入电源控制信号的数据来控制其开/关,而在芯片定型后要测试这多个电压区往往会导致功耗过大。低功耗测试中存在的挑战绝不仅仅是控制测试中的功耗。要在低功耗环境下达到高质量,那么各个分离单元、电平转换器和状态保持寄存器,只要需要测试,就必须能够通过一个扫描链控制。这样才可能测试如此复杂的结构,以保证在低功耗方面随机的、系统的甚至是微小的具体瑕疵都能被找到。
低功耗ATPG
在DWT流程的物理实现过程中,进行测试插入时是考虑了功耗的。测试插入包括将扫描链真正连接到边界扫描I/O、嵌入式存储器内建自测(BIST)控制器、片上压缩逻辑、片上时钟产生和IEEE1500封装。例如,在连接了片上测试压缩逻辑之后,会显著地增大功耗负荷。因此,插入片上压缩逻辑时必须进行功耗折衷。必须在全面理解功耗要求的情况下对扫描链的长度进行优化,以保证在与片上压缩逻辑有关的大量短扫描链间变化时产生的功耗不会对总功耗有负面影响。随着测试模式下的功耗情况越来越引人关注,在创建功耗优化的测试模式方面ATPG本身开始变得越来越重要。即通过限制开关行为,同时利用由设计师添加的功耗管理逻辑来达到限制功耗的目的。例如,感知功耗的ATPG就可以通过智能化填充扫描链中的"无需注意"位,将触发器的转换次数减至最少,从而达到极大减小功耗的目的。
最后一点,由于DWT的第一次测试肯定是在测试仪上运行,因而还能降低制造成本。这是因为DWT在测试和功耗验证间进行了相当紧密的集成。同时,在芯片流片之前进行制造测试的自动化验证(利用仿真、等效检验、约束产生和高级格式分析等技术)也使ATE程序能够一次成功。
本文小结
作为消费者,我们每天使用的产品中都有低功耗器件。此类器件能够持续兴旺发展的关键就是品质和可靠性,而不论品质还是可靠性都高度依赖于器件的制造测试工艺,以及能否通过制造测试剔除坏的器件,同时不因扫描测试时过大的功耗而降低器件的可靠性。保证低功耗环境下成功实现制造测试的最佳方法就是在设计早期就将利用能感知功耗的DFT和ATPG工具进行测试时的功耗考虑在内。而要使这些工具最大程度地发挥功效,测试就必须成为设计过程的一部分。于是,为保证低功耗产品的发展能够更进一步,"设计时测试"(DWT)这种对工具进行了深度集成并充分考虑测试过程中功耗的新方法就必将起到十分重要的作用。
- 基于架构与基于流程的DFT测试方法之比较(11-06)
- 低功耗制造测试的设计-第一部分(01-29)
- 低功耗制造性测试的设计-第二部分(01-29)
- 提高DFT设计测试覆盖率的一种有效方法(01-22)
- 生产制造中的低功耗测试方法(02-27)
- 一种大型弹箭动平衡测量系统及设计(04-25)