微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 消费类电子 > 如何让无线充电稳固便携产品的世界

如何让无线充电稳固便携产品的世界

时间:11-12 来源:3721RD 点击:

由于这产技术相当新颖且各厂商有自己对技术的表述,所以无线充电、感应式电力、非接触充电、无接点充电都是泛指相同的技术,距离1mm到数公尺都是一样是无线,供电端与受电端交互作用就称感应,所以无线充电是广义的名词没有一定的规格。


原理简单,难于实践
无线充电的方法目前唯一有机会量产商品化为线圈感应式。线圈感应式的原理很简单,是百年前就被发现物理现象,但过去长久以来这样的线圈感应只运用在绕线式的变压器中。在现今的应用中,由于装置本身需要有外壳包装,发射端加上接收端的外壳厚度至少从3mm起算,早期电动牙刷产品开发时就发现当距离拉开后需要将线圈上的操作频率提高才能让电力能传送的更远;在电磁波中有一个特性,就是频率越高的电磁波可以传送比较长的距离后能量衰减较低。后来RFID应用开始发展,主要就规划的三个频段LF低频(125~135KHz)、HF高频(13、56MHz)、UHF超高频(860~960MHz)可以使用,而这些频段也造就了目前无线电力系统在设计之初频率采用的参考点。这几年来发展出新的技术可用较高的"共振"接收效率运作方式,由于这个技术较新所以各界的说法很多,但都是有一个很重要的特性,就是接收线圈上都会有配置电容来构成一个具有频率特性的接收天线,在特定的频率下可以得到较大的功率移转。这部份就跟早期的电磁感应不同,当距离拉开后依然就可以得到良好的电力传送效果。共振的原理非常简单,就跟钢琴调音师一样放不同水量的玻璃杯,在精准的调音下可以将某个玻璃杯透过共振将其振碎;但若是没有经过专业钢琴调音师训练的一般人,可能永远也调不出可以让玻璃杯振碎的频率!这就是原理简单、难于实践。

三大效能指针:效率、安全、功率
电动牙刷早在10年前就堆出无线充电了,当时由于功率需求低所以不需要考虑效率与安全。早期的系统转换效率只有20%-30%,且没有安全机制并不会辩识目标连续供电,这样的系统就与微型电磁炉一样。由于功率很小,接收需求只有0、1W上下,只有20%的转换效率下即有80%的能量于传送中转成热量散逸,这样推算发射器提供0、5W的能量到接收器为0、1W的能量,0、4W产生的热量有限对系统的温度上升不明显,且系统最大输出能力也不大即0、5W,所以在发射器上放置金属异物也不会产生危险;但今日的装置需求远高于0、1W,以热销的智能型手机来看接收需要5V-1A 即5W的充电能量,若用电动牙刷的系统进行设计问题就会很大了,接收端5W的需求在只有20%的转换效率下有20W的能量转换成热能散逸,这样的能量会产生庞大的热能会导致系统温度大幅上升,在这样的推算下,系统最大输出能力会在25W,若为无安全设计下于发射器上放置金属异物可能会导致火灾意外,所以在功率需求提高后衍生的问题需要全新的设计来完成无线充电。新设计的系统为了达到目标功率,必需先解决效率与安全的问题。


高转换效率仰赖先进规格零件与材料
现今无线充电系统都采用共振的方式进行设计,在架构上都大至相同有下列这些构造:
发射器内有:

直流电源输入; 频率产生装置; 切换电力的开关; 发射的线圈与电容谐振组合。

接收器内有:
A、 接收的线圈与电容谐振组合;
B、 整流器;
C、 滤波与稳压器;
D、 直流电源输出。

在样的架构下从发射器的直流电源输入到接收器的直流电源输出的每一个环节都是效率损耗的要点,在电源电路中电流通过的每一个有阻抗特性的零件都会在上面损耗部份能量,这几年材料的进步也让无线充电的实用化大增,其中有几样先进零件是无线充电系统中与传输效率相关的,为了达到高转换效率需要将这些零件与材料作组合运用。

a、频率产生装置:目前有数家公司将此部份开发成IC销售,其为发射电路板上的关键零件。
b、切换电力的开关:大多为MOSFET所构成,低导通阻抗与高切换速度是选用的要点。
c、发射/接收的线圈与电容谐振组合:此部份为过去从未出现过的技术,由于无规则可循所以只能透过不断的尝试,另外未了阻绝多于的能量散到其它地方,于线圈的未感应侧都会家上磁性材料,这类的材料特性也是全新的应用。
d、整流器:由于在线圈上的操作都是高频率、高电压的能量讯号需要能有效的换成直流电才能给受电装置使用,目前大多采用超低VF的萧特基二极管所构成。
e、滤波与稳压器:这部份难度在接收装置空间有限,设计上要小型化的困难处,通常高转换效率的电路配置大体积被动零件。

设计最艰难的部份在于安全
先前提到无线充电系统与电磁炉一样会发射电磁波能量,这有两大问题:

其一:当发

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top