便携式移动电视接收系统浅析
时间:09-21
来源:电子展览网
点击:
3、整数变换
对帧内或帧间预测的残差进行DCT编码。为了避免舍入误差造成的编码器和解码器之间不匹配的问题,对DCT的定义做了修改,使得变换仅用整数加减法和移位操作即可实现,这样在不考虑量化影响的情况下,解码端的输出可以准确地恢复编码端的输入。当然,这样做的代价是压缩性能略微下降。此外,该变换是针对4×4块进行的,这也有助于减小块效应。
为了进一步利用图像的空间相关性,在对色度分量的预测残差和16×16帧内预测的预测残差进行上述整数DCT之后,标准还将每个4×4变换系数块中的DC系数组成2×2或4×4大小的块,进一步做哈达玛(Hadamard)变换。
4、熵编码
对于Slice层以上的数据,采用Exp-Golomb码,这是一种没有自适应能力的VLC。而对于Slice层(含)以下的数据,如果是残差,有两种熵编码方式:基于上下文的自适应变长码(CAVLC)和基于上下文的自适应二进制算术编码(CABAC);如果不是残差,采用Exp-Golomb码或CABAC编码,视编码器的设置而定。
(1)CAVLC
VLC的基本思想就是对出现频率高的符号使用较短的码字,而对出现频率低的符号采用较长的码字。这样可以使得平均码长最小。
在CAVLC中,采用若干VLC码表,不同的码表对应不同的概率模型。编码器能够根据上下文,如周围块的非零系数或系数的绝对值大小,在这些码表中自动地选择,尽可能地与当前数据的概率模型匹配,从而实现上下文自适应的功能。
(2)CABAC
算术编码是一种高效的熵编码方案,其每个符号所对应的码长被认为是分数。由于对每一个符号的编码都与以前编码的结果有关, 所以它考虑的是信源符号序列整体的概率特性,而不是单个符号的概率特性,从而能够更大程度地逼近信源的极限熵,降低码率。
中的CABAC实现了绕开算术编码中无限精度小数的表示问题和对信源符号概率进行估计的问题。在CABAC中,每编码一个二进制符号,编码器就会自动调整对信源概率模型(用一个"状态"来表示)的估计,随后的二进制符号就在这个新的概率模型基础上进行编码。这样的编码器不需要信源统计特性的先验知识,而是在编码过程中自适应地估计。这使得CABAC有更大的灵活性,可以获得更好的编码性能-码率降低大约10%。
5、SP Slice
SP Slice的主要目的是用于不同码流的切换,也可用于码流的随机访问、快进/快退和错误恢复。这里指的不同码流,是指在不同比特率限制下对同一信源进行编码所产生的码流。设切换前传输码流中最后一帧为Al,切换后的目标码流第一帧为B2(假设是P帧),由于B2的参考帧不存在,直接切换显然会导致严重失真,而且这种失真会向后传递。简单的解决方法就是传输帧内编码的B2,但是一般I帧的数据量很大,这种方法会造成传输码率陡然增大。根据前面的假设,由于是对同一信源进行编码,尽管比特率不同,但切换前后的两帧必然有相当大的相关性,所以编码器可以将Al作为B2的参考帧,对B2进行帧间预测,预测误差就是SP Slice,然后通过传递SP Slice完成码流的切换。与常规P帧不同的是,生成SP Slice所进行的预测是在Al和B2的变换域中进行的。SP Slice要求切换后B2的图像和直接传送目标码流时一样。当然,如果切换的目标是毫不相关的另一码流,SP Slice就不适用了。
6、灵活的宏块排序
灵活的宏块排序(FMO),是指将一幅图像中的宏块分成几个组,分别独立编码,某一个组中的宏块不一定是在常规扫描顺序下前后连续,而可能是随机地分散在图像中各个不同的位置。这样,在传输时,如果发生错误,某个组中的某些宏块不能正确解码时,解码器仍然可以根据图像的空间相关性,依靠其周围正确译码的象素,对其进行恢复。
这些特点使得它的应用场合相当广泛,包括可视电话(固定或移动)、实时视频会议系统、视频监控系统及因特网视频传输、多媒体信息存储等。
三、小结
最终,DVB-H标准主要解决了基于DVB数据广播和地面电视标准融合后的两个问题:它采用的基于时分复用的策略,实现了节省功耗和业务的无缝交互;使用MPE-FEC技术,可提供鲁棒性更强的信号,使得在室内低速率移动和室外高速率移动的手持终端(特别是手机)能进行正常的业务访问。
以其高效的编码性能可以适用于多种网络,同时也可满足多种应用的需求。可以应用在基于电缆、卫星、 调制解调器、 DST 等信道的多种领域;也可应用于视频数据在光学或磁性设备上的存储和基于 ISDN 、以太网、 DSL 无线及移动网络的公话服务、视频流服务、彩信服务等方面。
未来的移动视频接收中解决了编码问题,DVB-H标准解决了视频流在传输中存在的问题,使得从收听广播节目、观看影像档案到在手机上观看电视直播,成为一个再自然不过的发展过程。这种体验对于消费者所带来的冲击,绝对会令人难以想象。随着电信网、计算机网和有线电视网的三网融合趋势,已经注定这些各具优势的技术在交叉和互补的运用过程中会诞生出多种多样的新媒体,而手机将成为多种传播媒体的载体,将成为一种新兴媒体--多媒体的综合服务终端。这必将给人们带来更快、更多的信息获取方式。
对帧内或帧间预测的残差进行DCT编码。为了避免舍入误差造成的编码器和解码器之间不匹配的问题,对DCT的定义做了修改,使得变换仅用整数加减法和移位操作即可实现,这样在不考虑量化影响的情况下,解码端的输出可以准确地恢复编码端的输入。当然,这样做的代价是压缩性能略微下降。此外,该变换是针对4×4块进行的,这也有助于减小块效应。
为了进一步利用图像的空间相关性,在对色度分量的预测残差和16×16帧内预测的预测残差进行上述整数DCT之后,标准还将每个4×4变换系数块中的DC系数组成2×2或4×4大小的块,进一步做哈达玛(Hadamard)变换。
4、熵编码
对于Slice层以上的数据,采用Exp-Golomb码,这是一种没有自适应能力的VLC。而对于Slice层(含)以下的数据,如果是残差,有两种熵编码方式:基于上下文的自适应变长码(CAVLC)和基于上下文的自适应二进制算术编码(CABAC);如果不是残差,采用Exp-Golomb码或CABAC编码,视编码器的设置而定。
(1)CAVLC
VLC的基本思想就是对出现频率高的符号使用较短的码字,而对出现频率低的符号采用较长的码字。这样可以使得平均码长最小。
在CAVLC中,采用若干VLC码表,不同的码表对应不同的概率模型。编码器能够根据上下文,如周围块的非零系数或系数的绝对值大小,在这些码表中自动地选择,尽可能地与当前数据的概率模型匹配,从而实现上下文自适应的功能。
(2)CABAC
算术编码是一种高效的熵编码方案,其每个符号所对应的码长被认为是分数。由于对每一个符号的编码都与以前编码的结果有关, 所以它考虑的是信源符号序列整体的概率特性,而不是单个符号的概率特性,从而能够更大程度地逼近信源的极限熵,降低码率。
中的CABAC实现了绕开算术编码中无限精度小数的表示问题和对信源符号概率进行估计的问题。在CABAC中,每编码一个二进制符号,编码器就会自动调整对信源概率模型(用一个"状态"来表示)的估计,随后的二进制符号就在这个新的概率模型基础上进行编码。这样的编码器不需要信源统计特性的先验知识,而是在编码过程中自适应地估计。这使得CABAC有更大的灵活性,可以获得更好的编码性能-码率降低大约10%。
5、SP Slice
SP Slice的主要目的是用于不同码流的切换,也可用于码流的随机访问、快进/快退和错误恢复。这里指的不同码流,是指在不同比特率限制下对同一信源进行编码所产生的码流。设切换前传输码流中最后一帧为Al,切换后的目标码流第一帧为B2(假设是P帧),由于B2的参考帧不存在,直接切换显然会导致严重失真,而且这种失真会向后传递。简单的解决方法就是传输帧内编码的B2,但是一般I帧的数据量很大,这种方法会造成传输码率陡然增大。根据前面的假设,由于是对同一信源进行编码,尽管比特率不同,但切换前后的两帧必然有相当大的相关性,所以编码器可以将Al作为B2的参考帧,对B2进行帧间预测,预测误差就是SP Slice,然后通过传递SP Slice完成码流的切换。与常规P帧不同的是,生成SP Slice所进行的预测是在Al和B2的变换域中进行的。SP Slice要求切换后B2的图像和直接传送目标码流时一样。当然,如果切换的目标是毫不相关的另一码流,SP Slice就不适用了。
6、灵活的宏块排序
灵活的宏块排序(FMO),是指将一幅图像中的宏块分成几个组,分别独立编码,某一个组中的宏块不一定是在常规扫描顺序下前后连续,而可能是随机地分散在图像中各个不同的位置。这样,在传输时,如果发生错误,某个组中的某些宏块不能正确解码时,解码器仍然可以根据图像的空间相关性,依靠其周围正确译码的象素,对其进行恢复。
这些特点使得它的应用场合相当广泛,包括可视电话(固定或移动)、实时视频会议系统、视频监控系统及因特网视频传输、多媒体信息存储等。
三、小结
最终,DVB-H标准主要解决了基于DVB数据广播和地面电视标准融合后的两个问题:它采用的基于时分复用的策略,实现了节省功耗和业务的无缝交互;使用MPE-FEC技术,可提供鲁棒性更强的信号,使得在室内低速率移动和室外高速率移动的手持终端(特别是手机)能进行正常的业务访问。
以其高效的编码性能可以适用于多种网络,同时也可满足多种应用的需求。可以应用在基于电缆、卫星、 调制解调器、 DST 等信道的多种领域;也可应用于视频数据在光学或磁性设备上的存储和基于 ISDN 、以太网、 DSL 无线及移动网络的公话服务、视频流服务、彩信服务等方面。
未来的移动视频接收中解决了编码问题,DVB-H标准解决了视频流在传输中存在的问题,使得从收听广播节目、观看影像档案到在手机上观看电视直播,成为一个再自然不过的发展过程。这种体验对于消费者所带来的冲击,绝对会令人难以想象。随着电信网、计算机网和有线电视网的三网融合趋势,已经注定这些各具优势的技术在交叉和互补的运用过程中会诞生出多种多样的新媒体,而手机将成为多种传播媒体的载体,将成为一种新兴媒体--多媒体的综合服务终端。这必将给人们带来更快、更多的信息获取方式。
- 便携式设备的移动电视功能实现(11-17)
- 全球手机电视三大技术标准对比分析(08-19)
- 电视手机的标准竞争与设计挑战(09-10)
- 手机电视的频率使用及在我国面临的发展问题 (09-26)
- 手机电视标准不介入终端定制 合作是关键(10-01)
- 频谱可用性对移动电视解决方案的影响(01-15)