车门控制模块的电动车窗的设计
时间:03-02
来源:综合电子论坛
点击:
以前曾用机械方法控制的车门系统现在逐渐改成电子控制,越来越多的低端汽车也开始采用电子控制的车门控制系统,利用CAN或者LIN总线通信技术实现四个车门之间的通信。车窗防夹功能是车门控制系统的难点之一。门控系统具有多种故障诊断能力,能够及时识别出短路、断路、过热、过载等故障。
本文结合汽车车门控制模块设计的项目实践,重点介绍了电动车窗部分的硬件和软件设计。对智能功率芯片BTS7960在正常运行时的启动特性及故障检测特性进行了研究与分析,并给出了试验结果。无线SOC开发平台499元 S3C44B0 ARM7开发板378元 S3C2410 ARM9开发板780元 AT91SAM
车门控制模块的整体设计
图1是门控模块的原理框图,其中微控制器XC164CS用于控制所有功率器件的开关动作,同时对系统状态进行定时监控,接收合适的故障反馈信号,并通过车载网络(如CAN总线)实现与中央车身控制器及其他车门控制器的故障信息和按键控制信息的交换,从而及时在用户界面上显示故障内容并对车门进行实时控制,确保了行车安全。
图1 门控模块整体原理框图
16位微控制器XC164CS基于增强 C166S V2结构,结合了RISC和CISC处理器的优点,并且通过MAC单元的DSP功能实现了强大的计算和控制能力。XC164CS把功能强劲的CPU内核和一整套强大的外设单元集成于一块芯片上,使得连接变得非常有效和方便。
电动车窗采用两个半桥智能功率驱动芯片BTS7960B组合成一个H桥驱动,中央门锁、后视镜和加热器的驱动芯片分别采用TLE6208-3G、 BTS7741G和BSP752R,车灯的驱动芯片采用BTS724。这些器件已提供了完善的故障检测及保护功能,因而避免了采用过多的分立元件,大大减小了模块体积,并提高了模块的EMC(电磁兼容)特性。
车门控制模块的电路主要由以下几部分组成:电源电路、电动车窗驱动电路、后视镜驱动电路、加热器驱动电路、中央门锁驱动电路、车灯驱动电路、CAN总线接口电路及按键接口电路等。
电动车窗的硬件设计
1 电动车窗驱动电路及启动特性
本车窗控制系统通过智能功率芯片BTS7960驱动直流电机转动,BTS7960的接口电路如图2所示。图中的引脚7960INH1、 7960IN1、7960IS1、7960INH2、7960IN2和7960IS2分别连接到XC164CS的I/0口P9.4、P1L.4、 P5.6、P9.5、P1L.5和P5.7。
图2 BTS7960接口连线图
BTS7960是应用于电机驱动的大电流半桥高集成芯片,它带有一个P沟道的高边MOSFET、一个N沟道的低边MOSFET和一个驱动IC。P沟道高边开关省去了电荷泵的需求, 因而减小了EMI。集成的驱动IC具有逻辑电平输入、电流诊断、斜率调节、死区时间产生和过温、过压、欠压、过流及短路保护的功能。BTS7960通态电阻典型值为16mΩ,驱动电流可达43A。因此即使在北方寒冷的冬天,仍能保证车窗的安全启动。
如图3所示,两片BTS7960构成全桥驱动车窗上升或下降。T1和T4导通时,车窗上升;T2和T3导通时,车窗下降。系统没有主动制动过程,车窗移好之后,上管触发信号停,通过该桥臂下管反并联二极管续流,直到电流为0A。续流过程持续250ms,足以满足车窗电机大功率的需求。为了避免车窗电机启动瞬间出现电流尖峰,通过对下桥臂开关管进行频率为20kHz的PWM信号控制,实现软启动功能。
2 BTS7960故障检测特性
如图3所示,BTS7960的芯片内部为一个半桥。INH引脚为高电平,使能BTS7960。IN引脚用于确定哪个MOSFET导通。IN=1且 INH=1时,高边MOSFET导通,OUT引脚输出高电平;IN=0且INH=1时,低边MOSFET导通,OUT引脚输出低电平。SR引脚外接电阻的大小,可以调节MOS管导通和关断的时间,具有防电磁干扰的功能。IS引脚是电流检测输出引脚。
图3 全桥驱动电路示意图
BTS7960的引脚IS具有电流检测功能。正常模式下,从IS引脚流出的电流与流经高边MOS管的电流成正比,若RIS=1kΩ,则V IS=I load/8.5;在故障条件下,从IS引脚流出的电流等于I IS(lim) (约4.5mA),最后的效果是IS为高电平。如图4所示,图(a)为正常模式下IS引脚电流输出,图(b)为故障条件下IS引脚上的电流输出。
BTS7960短路故障实验的实验条件如下:+12.45V电池电压,+5V电源供电,2.0m短路导线(R=0.2Ω),横截面积为0.75 mm,连接1kΩ电阻和一个发光二极管。V S与电池正极间导线长1.5m(R=0.15Ω)。如图5所示,其中V IS是IS引脚对地的电压、V L是OUT引脚对地电压,I L为发生对地短路故障时,流过BTS7960的短路电流。
(a) (b)
图4 BTS7960电流检测引脚IS的工作原理图
无论是先上电后短路还是先短路后上电,BTS7960都呈现出相同的保护特性,所以下文将只就其一进行讲述。
图5 BTS7960的对地短路实验电路图
图6和图7分别为BTS7960先短路后上电短路实验波形图的前半部分和后半部分。短路瞬间输出端电流迅速上升,在80μs的时间内,电流上升到峰值,可达62A左右。此时,BTS7960检测出短路故障,关断MOS管,输出电流下降直至0A, 紫色箭头所指部分有明显的关断,图中虚线所夹部分为MOS管的关断及维持关断的过程,整个过程持续时间约为80μs。短路导通瞬间,OUT引脚输出电压为 5V左右,这是短路导线与电池和地之间的总电阻的分压值;MOS管关断期间,OUT引脚输出电压为0V。在电流急剧下降的瞬间,短路导线上感应出微弱的反向电动势,所以OUT引脚输出电压会呈现出短时间负电压。状态检测引脚IS在5V左右上下波动,其具有随短路电流上下波动的特点。整个短路过程中, BTS7960周期性的关断MOS管,防止短路电流使芯片持续升温,导致芯片过热烧毁,从而有效地保护了芯片。最后,BTS7960完全关断MOS管,短路电流缓降为0A,IS管脚在MOS管完全关断后约500μs由自身的冷却恢复至正常电平。
图6BTS7960短路实验波形图前半部分
图7 BTS7960短路实验波形后半部分
本文结合汽车车门控制模块设计的项目实践,重点介绍了电动车窗部分的硬件和软件设计。对智能功率芯片BTS7960在正常运行时的启动特性及故障检测特性进行了研究与分析,并给出了试验结果。无线SOC开发平台499元 S3C44B0 ARM7开发板378元 S3C2410 ARM9开发板780元 AT91SAM
车门控制模块的整体设计
图1是门控模块的原理框图,其中微控制器XC164CS用于控制所有功率器件的开关动作,同时对系统状态进行定时监控,接收合适的故障反馈信号,并通过车载网络(如CAN总线)实现与中央车身控制器及其他车门控制器的故障信息和按键控制信息的交换,从而及时在用户界面上显示故障内容并对车门进行实时控制,确保了行车安全。
图1 门控模块整体原理框图
16位微控制器XC164CS基于增强 C166S V2结构,结合了RISC和CISC处理器的优点,并且通过MAC单元的DSP功能实现了强大的计算和控制能力。XC164CS把功能强劲的CPU内核和一整套强大的外设单元集成于一块芯片上,使得连接变得非常有效和方便。
电动车窗采用两个半桥智能功率驱动芯片BTS7960B组合成一个H桥驱动,中央门锁、后视镜和加热器的驱动芯片分别采用TLE6208-3G、 BTS7741G和BSP752R,车灯的驱动芯片采用BTS724。这些器件已提供了完善的故障检测及保护功能,因而避免了采用过多的分立元件,大大减小了模块体积,并提高了模块的EMC(电磁兼容)特性。
车门控制模块的电路主要由以下几部分组成:电源电路、电动车窗驱动电路、后视镜驱动电路、加热器驱动电路、中央门锁驱动电路、车灯驱动电路、CAN总线接口电路及按键接口电路等。
电动车窗的硬件设计
1 电动车窗驱动电路及启动特性
本车窗控制系统通过智能功率芯片BTS7960驱动直流电机转动,BTS7960的接口电路如图2所示。图中的引脚7960INH1、 7960IN1、7960IS1、7960INH2、7960IN2和7960IS2分别连接到XC164CS的I/0口P9.4、P1L.4、 P5.6、P9.5、P1L.5和P5.7。
图2 BTS7960接口连线图
BTS7960是应用于电机驱动的大电流半桥高集成芯片,它带有一个P沟道的高边MOSFET、一个N沟道的低边MOSFET和一个驱动IC。P沟道高边开关省去了电荷泵的需求, 因而减小了EMI。集成的驱动IC具有逻辑电平输入、电流诊断、斜率调节、死区时间产生和过温、过压、欠压、过流及短路保护的功能。BTS7960通态电阻典型值为16mΩ,驱动电流可达43A。因此即使在北方寒冷的冬天,仍能保证车窗的安全启动。
如图3所示,两片BTS7960构成全桥驱动车窗上升或下降。T1和T4导通时,车窗上升;T2和T3导通时,车窗下降。系统没有主动制动过程,车窗移好之后,上管触发信号停,通过该桥臂下管反并联二极管续流,直到电流为0A。续流过程持续250ms,足以满足车窗电机大功率的需求。为了避免车窗电机启动瞬间出现电流尖峰,通过对下桥臂开关管进行频率为20kHz的PWM信号控制,实现软启动功能。
2 BTS7960故障检测特性
如图3所示,BTS7960的芯片内部为一个半桥。INH引脚为高电平,使能BTS7960。IN引脚用于确定哪个MOSFET导通。IN=1且 INH=1时,高边MOSFET导通,OUT引脚输出高电平;IN=0且INH=1时,低边MOSFET导通,OUT引脚输出低电平。SR引脚外接电阻的大小,可以调节MOS管导通和关断的时间,具有防电磁干扰的功能。IS引脚是电流检测输出引脚。
图3 全桥驱动电路示意图
BTS7960的引脚IS具有电流检测功能。正常模式下,从IS引脚流出的电流与流经高边MOS管的电流成正比,若RIS=1kΩ,则V IS=I load/8.5;在故障条件下,从IS引脚流出的电流等于I IS(lim) (约4.5mA),最后的效果是IS为高电平。如图4所示,图(a)为正常模式下IS引脚电流输出,图(b)为故障条件下IS引脚上的电流输出。
BTS7960短路故障实验的实验条件如下:+12.45V电池电压,+5V电源供电,2.0m短路导线(R=0.2Ω),横截面积为0.75 mm,连接1kΩ电阻和一个发光二极管。V S与电池正极间导线长1.5m(R=0.15Ω)。如图5所示,其中V IS是IS引脚对地的电压、V L是OUT引脚对地电压,I L为发生对地短路故障时,流过BTS7960的短路电流。
(a) (b)
图4 BTS7960电流检测引脚IS的工作原理图
无论是先上电后短路还是先短路后上电,BTS7960都呈现出相同的保护特性,所以下文将只就其一进行讲述。
图5 BTS7960的对地短路实验电路图
图6和图7分别为BTS7960先短路后上电短路实验波形图的前半部分和后半部分。短路瞬间输出端电流迅速上升,在80μs的时间内,电流上升到峰值,可达62A左右。此时,BTS7960检测出短路故障,关断MOS管,输出电流下降直至0A, 紫色箭头所指部分有明显的关断,图中虚线所夹部分为MOS管的关断及维持关断的过程,整个过程持续时间约为80μs。短路导通瞬间,OUT引脚输出电压为 5V左右,这是短路导线与电池和地之间的总电阻的分压值;MOS管关断期间,OUT引脚输出电压为0V。在电流急剧下降的瞬间,短路导线上感应出微弱的反向电动势,所以OUT引脚输出电压会呈现出短时间负电压。状态检测引脚IS在5V左右上下波动,其具有随短路电流上下波动的特点。整个短路过程中, BTS7960周期性的关断MOS管,防止短路电流使芯片持续升温,导致芯片过热烧毁,从而有效地保护了芯片。最后,BTS7960完全关断MOS管,短路电流缓降为0A,IS管脚在MOS管完全关断后约500μs由自身的冷却恢复至正常电平。
图6BTS7960短路实验波形图前半部分
图7 BTS7960短路实验波形后半部分
- 基于TLE7810的车门控制系统设计(08-24)
- 利用可定制微控制器优化算法设计(05-13)
- 32位汽车微控制器实现节能减排(04-04)
- MAXQ3120混合信号微控制器的应用案例(11-06)
- 首款ARM Cortex-M0内核的微控制器优化智能电表性能(05-01)
- 基于节能微控制器设计可延长电池寿命设计(06-10)