微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 消费类电子 > DBS电视接收机低中频与直接转换调谐器的比较

DBS电视接收机低中频与直接转换调谐器的比较

时间:02-16 来源:中电网 点击:

DBS(直接广播卫星)系统包含两个主要的信号处理子系统,分别是低噪声(LNB)下变频器和DBS电视接收机。LNB下变频器位于卫星碟型天线基座,负责把卫星信号频谱从C、Ku或Ka波段降到L波段(0.9GHz~2.2GHz)。DBS电视接收机则在机顶盒内部,负责把信号降为基带,并执行信号处理功能,例如解调、MPEG译码、显示处理和模拟音/视频编码(NTSC/PAL)。
DBS接收机共有4个功能块,分别为射频调谐器、QPSK解调器/信道译码器、主机处理器和LNB电源控制器。射频调谐器把信号从L波段下变频至基带;QPSK解调器/信道译码器把位串流还原;主机处理器负责MPEG数据流译码,然后产生视频和音频输出信号,传给电视机;LNB电源控制器则会产生13V/18V直流电,并通过射频同轴缆线提供给LNB模块。接收机还会把一个交流控制信号加到该直流电源,用来选择所要的LNB极化方向。

过去十年来,DBS接收机的射频调谐器已放弃原先的高中频双转换架构,转而采用直接转换零中频(ZIF)架构,最近,市场上也出现了单芯片CMOS低中频接收机。DBS接收机有各种不同的射频调谐器架构,它们之间存在许多差异,会对设计师与最终系统造成影响。

传统卫星调谐器架构

最早出现的卫星电视调谐器芯片采用如图1所示的高中频双转换架构,它拥有良好的镜像拒斥效能。高中频双转换架构使用外接式中频表面声波滤波器(IF SAW),作为电路级之间的滤波器,以便降低调谐器芯片所须达到的镜像拒斥要求。然而,这些超外差调谐器却需要复杂的两级式混频程序:调谐器先把信号从L波段降至高中频(例如480MHz),再通过第二级混频电路把信号降至基带。高中频双转换架构还会消耗较多电能,因为外部电路必须使用很高的中频频率;另外,这些外部组件也会增加产品的用料成本。

直接转换DBS调谐器仅需一次混频就能将射频信号从L波段直接降至基带(见图2)。直接转换接收机并没有镜像拒斥的问题,因为镜像频率也是所用要的目标信号。它还能省下芯片外接SAW滤波器、第二组中频混频器和高中频增益电路,这可简化调谐器架构,进而缩小芯片面积、降低功耗,并减少外部元器件数目和总系统成本。

直接转换也有一些缺点,例如,I和Q通道之间可能因为三种原因出现直流偏移,分别是组件不匹配、本地振荡器(LO)信号泄漏至射频输入端,以及射频信号泄漏至混频器的本地振荡器输入端。直流偏移可能导致信号路径的放大电路饱和,故应避免。GSM等时域双工(TDD)通信系统可在通信频道关闭时测量并消除直流偏移,然而,数字卫星电视却须持续不断地传输信号,所以,只能利用回路带宽很小的直流偏移伺服回路(DC offsetservo loop)减少直流偏移。窄带确保偏移消除回路只会略微影响信号质量,而且还能通过解调器的前向纠错(FEC)电路加以修复。但这种窄带伺服回路需要很大的交流耦合电容,这类电容通常无法集成至芯片。

直接转换调谐器的另一个缺点是,信号路径组件的1/f噪声可能导致调谐器噪声指数(noise figure)大幅下降,因为1/f噪声会与零中频位置的目标(复数)信号频谱重迭。由于双极晶体管的1/f噪声远小于MOS晶体管,大多数的零中频DBS调谐器都采用双极技术。厂商曾数次试图利用CMOS工艺设计直接转换DBS调谐器,当时,他们都选择使用无源混频器,因为它的信号路径不会用到任何有源晶体管,所以,1/f噪声会变得很小。然而,无源混频器却会出现转换损耗(conversion loss),使得基带电路噪声对接收机的整体噪声效能造成不利的影响。

半导体工艺选择及其对系统功能分割的影响

调谐器的后面是解调器,它是一种含有大量数字电路的组件,包括将零中频I和Q信号数字化的ADC前端。CMOS工艺可以减少解调器的芯片面积和功耗。接收机的第三个功能块是MPEG主机处理器,这个大型系统单芯片很适合采用130nm、90 nm或65 nm等先进CMOS工艺。

采用成熟的双极工艺和0.6μm~0.2μm微影技术的独立式调谐器不但极具成本竞争力,还可提供较高的转移频率(fT=25 GHz~50GHz),可以设计数个GHz级的调谐器。然而,厂商虽能利用先进BiCMOS工艺开发单芯片调谐器与解调器,但它们的成本却很高,因为它需要昂贵的多光罩工艺来处理数字电路密集的CMOS部分。

系统级封装(System-in-Package,SiP)是较可行的集成方法,它会把双极调谐器、CMOS解调器和MPEG处理器集成到单一封装中。系统级封装的主要优点是上市时间较快,因为现有的调谐器和解调器裸片都可以重复使用。它的主要缺点是封装成本较高、功耗散逸很复杂,还有打线接合(bondwire)造成的寄生参数耦合问题。

另一种系统分割方式是利用双极或BiCMOS工艺设计独立的射频调谐器,再把解调器和MPEG处理器集成至另一个CMOS组件,这种做法又称为主机与解调器集成法(demod-on-host,见图3)。这种分割方式就系统而言并不理想,因为源译码器与传输媒介有关,于是有线电视、地面广播和卫星接收器都需要不同的主机组件。这使OEM厂商无法开发一套通用硬件平台(见图4),它不仅影响产品的经济规模,还会增加厂商的认证和组装成本。通用硬件平台只需一个可连接各种传输媒介的射频前端,另外,还有一个与数字电视播送方式(卫星、有线、地面广播或IP网络)无关的主机处理器。从图4即可看出,通用硬件平台显然是较合理的系统分割方式。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top