智能吸尘器的开发与设计
动,设计传动比为3.7。设电机的转速为n(转/秒),驱动轮的半径为r(米),则驱动轮的前进速度为:
式中,vk,k=1,2,代表左右驱动轮的线速度;i--齿轮传动比。通过调节n的大小和正反,可以实现vk的连续变化,从而实现任意半径的转弯。电机转向与吸尘器的运动方式的关系如表1。
2.4 吸尘器部分
吸尘功能是由封闭在壳体中的小型吸尘器完成的。包括气泵、吸室、吸道和吸嘴。在吸尘器爬行的过程中,通过底盘上开的吸嘴将扫过的地面上的灰尘吸入吸室。
2.5 电源部分
由于智能吸尘器是以自主方式工作的,因而所用的电源不是一般拖线方式,而是采用随身携带的蓄电池(3A/20hour)。这样不但可实现无人控制,而且工作时较灵活。一次充电可以连续工作几个小时。
3 部分电路说明
3.1 超声信号发生
40kHz的超声波信号是由555芯片构成的多谐振荡电路产生的(如图4)。由R1、R11、R12和C1构成外围的充放电电路;当参数漂移时,通过调节R12的阻值,可微调信号的中心频率。
3.2 步进电机驱动
由控制器输出的驱动脉冲信号经7404反向后,驱动功率三极管从而带动步进电机。图5列出了一相的驱动电路。由于有两个步进电机,每一电机按四相八拍制工作,因而共有八组驱动电路。
3.3 控制器
控制器是由MC51单片机构成的。与前述控制器所完成的三相主要任务相对应的硬件结构分别介绍如下:路选信号由单片机的P1口输出,占用了P1.0~P1.6共6脚。它们直接控制6个模拟开关;步进电机的驱动信号由P2口输出,P2.0~P2.3控制步进电机A,P2.4~P2.7控制步进电机B;超声返回信号经放大、滤波、检波后,引入单片机的中断口,激励相应的中断处理程序。
4 系统性能及特点
从以上介绍可以看出,新一代的智能吸尘器通过将MC51单片微机与自身相结合,极大地提高了产品的可塑性,适应于高层次的开发与应用。它在完成超声避障的基础上,初步实现了无人干预下的自主工作方式,同时由于特殊的驱动结构的设计,实现零半径的转弯,因而具有智能化、高效性、轻便、灵巧等特点,是较新的发展方向
- 射频识别模块SMC51489在门禁系统中的应用(02-13)
- OLED显示模块与C8051F单片机的接口设计(08-14)
- 液晶显示模块DMF-50081在单片机系统中的应用(08-27)
- 大屏幕液晶显示在力矩限制器中的应用(09-03)
- 图形点阵式液晶显示模块与51单片机的接口设计(08-20)
- 基于AD7892SQ和CPLD的数据采集系统的设计(11-10)