数字信号的传送(上)
我们知道,数字信号在时域上是呈离散性的且都只有两种状态1和0,在短距离传送时(100米以下)可采用基带传输,当要进行远距离传输时就要采取载波传输方式了。载波传输系统是把数字信号调制到载波上再送入传输信道中,它同基带传送心痛仅是在数字信号的输出端增加一个调制器,在数字输入口前增加一个解调器而其它部分则完全相同。
一、基带传输系统
在数字通信系统中,信道编码器输出的代码还需经过码型变换,变为适于传输的码型。常用的基带传输码主要有以下几种:1、双极性不归零码;2、单极性不归零码;3、双极性归零码;4、单极性归零码;5、曼彻撕特码。这里的所谓双极性是指用正脉冲和负脉冲分别代表数字信号1和0;所谓单极性是指用正脉冲和零分别代表数字信号1和0;所谓不归零是代表第一个码元的脉冲过后紧接着是代表第二个码元的脉冲,两者之间没有时间间隔,即所谓归零。曼彻撕特码是以半个符号宽的先正后负(1、0)的脉冲代表数字信号1,而以半个符号的先负后正的脉冲(0、1)代表数字信号0,如图D-1所示。双极性不归零码中,如果0和1出现的概率相同,正负电压正好抵消无直流分量,因而对传输有利且有较强的抗干扰能力。
在基带传送系统中,通常采用多路复用技术,多路复用是将来自不同信息源的各路信息按某种方式合并为一路,通过同一信道传送给接收端,接收端再按相应方式分离出各路信号送给不同的用户。多路复用的方式有:1、频分复用;2、时分复用;3、码分复用;4、波分复用;5、时间压缩复用等。在数字通信中则更多地使用时分复用技术,所谓时分复用是将各路信号利用同一信道的不同时隙来进行通信,因为时分复用传输时各路信号不在同一时间上传送,不容易产生交调和互调失真,所以时分复用系统的非线性失真指标要求不高。
在时分复用系统中要使用两个主要器件:一是复接器,它的功能是把几路信号按时分复用的原理合成为一个合路数字信号。另一个是分接器,它与复接器功能相反,是把合路信号还原为几个支路的数字信号。把复接器和分接器装在一起称为数字复接设备。数字复接必须解决两个问题:一个是同步,一个是复接。同步由定时系统和码速调节单元组成,定时系统的内部时钟给复接器提供时间基准信号,码速调整单元是把码速不同的各支路调整成与复接器定时信号完成同步的数字信号,复接则是完成复接任务,把各支路信号汇接成一路信号。
数字基带信号都是矩形波,由于矩形波脉冲包含有丰富的谐波分量,所以在有限的信道带宽中,传输时必会产生失真,为此会引起较大的误码率。又由于每个码元所产生的谐波在时域上是相互交叠的,所以就产生了码间干扰,好在码元波形是按一定间隔发出的,只要在特定时刻的波形幅值没有失真,即使其他部分失真很大对码元的再生判决也无影响。
二、数字信号的载波传送
当数字信号要进行较长距离的传送时,就要采用载波传送的方式了。数字信号的载波传送与基带传送的主要区别就是增加了调制与解调的环节,是在复接器后增加了一个调制器,在分接器前增加一个解调器而已。
数字信号只有几个离散值,这就象用数字信号去控制开关选择具有不同参量的振荡一样,为此把数字信号的调制方式称为键控。调制方式有幅度键控(ASK);有频移键控(FSK);有相移键控(PSK)。
1、幅度键控(ASK)
幅度键控可以通过乘法器和开关电路来实现。载波在数字信号1或0的控制下通或断,在信号为1的状态载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送。那么在接收端我们就可以根据载波的有无还原出数字信号的1和0。对于二进制幅度键控信号的频带宽度为二进制基带信号宽度的两倍。
2、频移键控(FSK)
频移键控是利用两个不同频率F1和F2的振荡源来代表信号1和0,用数字信号的1和0去控制两个独立的振荡源交替输出。对二进制的频移键控调制方式,其有效带宽为B=2xF+2Fb,xF是二进制基带信号的带宽也是FSK信号的最大频偏,由于数字信号的带宽即Fb值大,所以二进制频移键控的信号带宽B较大,频带利用率小。
3、相移键控(PSK)
在相移键控中,在波相位受数字基带信号的控制,如在二进制基带信号中为0时,载波相位为0,为1时载波相位为π,载波相位和基带信号有一一对应的关系。
三、多进制数字调制
上面所讨论的都是在二进制数字基带信号的情况,在实际应用中,我们常常用一种称为多进制(如4进制,8进制,16进制等)的基带信号。多进制数字调制载波参数有M种不同的取值,多进制数字调制比二进制数字调制有两个突出的优点:一是有于多进制数字信号含有更多的信息使频带利用率更高;二是在相同的信息速率下持续时间长,可以提高码元的能量,从而减小由于信道特性引起的码间干扰。由于遍幅的关系,这里只讨论用得最多的一种调制方式:多进制相移键控(MPSK)。
多进制相移键控又称为多相制,因为基带信号有M种不同的状态,所以它的载波相位有M种不同的取值,这些取值一般为等间隔。在多相制移键控有绝对移相和相对移相两种,实际中大多采用四相绝对移相键控(4PSK,有称QPSK),四相制的相位有0、π/2、π、3π/2四种,分别对应四种状态11、01、00、10。QPSK信号可表示为I(t)COS2πft-Q(t)SIN2πfct,其中第一项是同相分量,第二项称为正交分量,所以QPSK又称为正交相移键控调制。
从上可知,QPSK的频带利用率是相应二进制数字调制的2倍,但这是以牺牲功率利用率为代价的。因为随着进制的增加各码元之间的距离减小,不利于信号的恢复,特别是受到噪声和干扰时误码率会随之增大。为解决这个问题,我们不得不提高信号功率(即提高信号的信噪比来避免误码率的增大),这就使功率利用率降低了。为此能否有一种方法使频带利用率增加各码元之间的距离又不太小呢?这就引入了一种称为QAM(正交幅度调制)。QAM的特点是各码元之间不仅幅度不同,相位也不同,属于幅度与相位相结合的调制方式,在QPSK中各码元的幅度相同只是相位不同,所以其平均功率较高,QAM由于各码元的幅度不同,所以平均功率较小。因此在平均功率相同的情况下,QAM各码元的电平取值可高于QPSK各码元的取值,从而使信噪比得而提高。
- 数字信号的传送(下)(09-24)
- 浅谈卫星电视中卫星天线及其馈源的对焦(10-02)
- 数字电视技术(09-26)
- 基于FPGA的IJF数字基带编码的实现(10-13)
- 迈克数字MMDS无线覆盖系统设计方案(01-15)