微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 人人都看得懂的电磁场理论

人人都看得懂的电磁场理论

时间:11-23 来源:mwrf 点击:

把自己传递下去。注意,这儿讲的相等,是同一时间的能量要相等,这个跟LC振荡完全不同,振荡虽然也是电场与磁场转换,但不是同时,而是这一刻电场转化为磁场,下一刻,磁场转换为电场,所以总能量不变,在两者之间转换,无法传递下去。而对电磁场波来说,是同一时刻,相互转换,电转换为磁,磁转换为电,从源端获取能量传递到终端去。


 

3.5.3传输线微分模型


       取一小段传输线来,红线中间部分,我们用集中元器件来描述,导线的长度,就是电感L,导线之间就是电容C。电感对应的是磁场,电容对应的是电场,这两个能量要相等。

1/2 * C * U * U = 1/2 * L * I * I

整理可得:

Z = U / I = SQR(L/C),SQR 为开平方根号。

 

       传输线阻抗的物理意义:在电磁场传输的过程中,电场与磁场能量相等,那么传输线两端的电压与电流必须满足这个比例关系。

3.5.4 阻抗匹配

       通过以上很容易明白了,不同的传输线,它的阻抗是不同的,电磁场是一个能量场,若这个能量不能被后级完全吸收,必然会反射回来,因为能量是无法消失的。所以要求终端的电阻与传输线阻抗一样,这样传递过来的能量可以被完全吸收而不引起反射导致信号模糊。普通线之所以无法传递高频,就是因为不停的各种反射,导致信号模糊而失真。一般来说,要求信号源与终端都要跟传输线阻抗匹配,这样哪怕终端反射回来信号,也可以被源端的电阻吸收。

       当有些传输线特别短,远远小于信号波长的时候,可以不需要太考虑阻抗,因为传输线太短,哪怕多次反射折叠,也不会使信号恶劣太多,所以不需要太考虑。我们普通的电路回路,在低频下,远远小于信号波长,哪怕多次折叠,也对信号没有什么影响,这就是普通电路不用太考虑电磁场的原因,而电路理论可以认为是电磁场理论在低频下的一个近似模型

       当多路不同阻抗的传输线或者终端连接在一起的时候,就需要考虑它们之间的阻抗匹配问题,需要引入电容电感实现阻抗匹配,这个就是大家经常听到的射频匹配问题。射频工作人员很大的精力都在调节信号的匹配。

       需要引起重视的是,理论上讲,传输线阻抗跟频率无关的,因为传输线微分等效电容电感的阻抗跟频率是同步变化的,抵消掉了,但是引入了电容电感来调节匹配,这些电容电感对不同的频率的阻抗不同,所以会有一些频响特性,不再是与信号的频率无关了。所以匹配调节的时候,一般要调节的在想要的频带上。

3.5.5 微带线

       电磁场的长距离传输,一般用同轴线,因为同轴线能量不能辐射到外界,但对于PCB的信号线设计,无法用同轴线,所以基于电磁场理论,设计了微带线。

 

3.5.5.0微带线截面图模型

       如上图右边的模型图,上面是宽度为W的信号线,PCB的覆铜一般是0.018毫米。下面是参考地,参考地要尽可能大于三倍的W宽度。信号线与地之间的高度是h,一般都是PCB的标准材料FR4,需要注意的是,不同厂家的FR4介电常数基本差不多,严格的需要厂家提供数据,并且还跟频率有关,一般1GHz以内的,取值4.2。

       微带线阻抗一般不需要用公式计算,网上有不少软件工具,只需要把这些参数代入即可。常用的知名专业软件为polar si8000,搜索"微带线阻抗",网上有很多免费的。


 

3.5.5.1微带线计算界面


       在高速设计的时候,尤其是长距离设计,尽可能的按微带线的概念设计,越靠近理想,信号完整性越好。

 

更详细描述见于顶楼嵌入式微系统msOS文档。

 

作者:凤舞天

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top