相位噪声基础及测试原理和方法
器的相位跳动,90度的相位偏移并不能时刻稳定。因此需要引人锁相环路对相位进行锁定,以保证两路信号相位稳定的相差90度。
由于锁相环路的引入会对相位噪声测量带来影响,在环路带宽内,振荡器的相位噪声将会被改善,因此在测量过程中需要对环路带宽内的相位噪声进行修正。通过锁相环的环路带宽特性,可以计算出环路增益,从而可以对测量结果进行修正。
鉴相器法测试相位噪声具有很多优点。
其中一个重要优点是鉴相后信号的载波被抑制,接收机的中频增益与载波电平无关,因此可以大大提高相位噪声的测试灵敏度。另外,可以采用低噪声放大器对鉴相后的信号进行放大,从而可以降低测量接收机的噪声系数,从而进一步提高其测试灵敏度。
同时,对于信号中同时存在的AM噪声和相位噪声。可以通过调整两路信号的相位差,使鉴相器可以分辨AM噪声和相位噪声。如果两路鉴相信号相位相差90°,则鉴相后输出对AM噪声的抑制可以高达40dB,当两路鉴相信号相位相差 0° 时,则输出结果仅有AM噪声。
该测试方法的另一优点是,相位噪声的测试不在受参考源的限制,因为可以选择非常好的相位噪声的源作为测量的参考。
该测试方法还可以采用双DUT法进行相位噪声的测量,当存在两个相同的高性能被测信号源时可以采用该方法,测量结果需要做3dB的修正。
但是,对于该测试方法也有相应的局限性,该方法设置相对复杂,测量前有时需要做测试校准和PLL参数计算;相对频谱仪方法来说,鉴相器法的测量频偏范围较窄。同时,由于信号源特性除了相位噪声指标外,还需要测量如谐波特性,杂散特性,邻信道抑制比等指标,而该方法则无法完成这些测量,还需要用频谱仪功能来实现。
3.3、数字相位解调测试法
针对以上测试方法的不足,目前最新的相位噪声测试的方法为数字相位解调法。该测试方法可以直接进行I/Q解调测量, 转换为Sf(f), 再计算L(f)。数字相位解调法无鉴相器和锁相环,所以不需要进行环路带宽修正,可以简化校准过程。该测试方法可以测量CW相位噪声,脉冲相位噪声,附加相位噪声,脉冲附加相位噪声等多项指标。同时该测试方法具有极低的参考源相位噪声、高速互相关,可以明显提高测试的灵敏度。并且可以在大信号存在时测量小电平信号的相位噪声。
4、脉冲信号相位噪声测试原理和方法
脉冲调制信号的频谱包含了中心谱线和不同PRF处的谱线。根据相位噪声的定义,测试脉冲调制信号的相位噪声就需要针对不同脉冲调制参数对被测信号进行滤波。
4.1、鉴相器法
与使用鉴相器法测试CW信号的相位噪声相比,测试脉冲信号的相位噪声指标就需要PRF滤波。对PRF滤波也有明确的要求:PRF滤波器必须带内平坦度好、边缘陡峭;不同的PRF频率需要不同的PRF滤波器;PRF滤波器必须在PRF/2之内有平坦的通带,在PRF之外有很大衰减;同时PRF滤波器衰减了PRF馈通,总之该PRF相当复杂,实现起来很困难,操作也比较复杂。
4.2、数字相位解调法
数字相位解调法得益于强大的数字处理能力,测试脉冲调制信号的相位噪声实现起来就比较简单,该测试方法具有与CW信号相位噪声测试相同的结构框图,没有鉴相器,无需对参考信号进行脉冲调制。PRF滤波器和脉宽加时间门在DSP中实现,易于处理不同PRF,无需复杂的校准,也可实现脉冲附加相噪的测量。
使用数字相位解调法测量脉冲信号的相位噪声首先采用零扫宽自动检测脉宽和周期,检测到脉冲信号之后可以自动的根据脉宽设置时间门长度,根据周期设置最大频偏,然后进行测试。最大可测量频偏为PRF/2,并且测试时间与连续波时相同。测试效率较高,操作相对比较简单、方便。
5、其他相关测试
5.1、附加(残余)相位噪声的测试原理和方法
所谓附加相位噪声是指由器件或电路附加的相位噪声。例如放大器,上、下变频器等。
直接使用频谱分析仪或者具有鉴相器法测试功能的信号源分析仪测试附加相位噪声时,一般都需要使用外部信号源和移相器,信号源和移相器指标的好坏会直接影响测试结果,并且实际操作非常复杂(需要精准的调节移相器的相位),由于附加相位噪声指标一般来说都比较低,所以该测试方法测试的结果尤其是准确度比较难以令人满意。
采用具有内部信号源的数字相位解调法进行附加相位噪声的测试操作比较简单方便,当选择"附加相噪"时,自动对内部硬件进行重新配置,该测试方法无需鉴相器和移相器,而且内部低噪声频率合成器产生 DUT 激励信号,所以该方法很大程度上简化了测量和校准设置。
5.2、调幅噪声的测试原理和方法
调幅噪声测试常用的方法有两种:一种是使用二极管检波器进行检波,但该方法需要
- 低相位噪声射频信号源领域的新标准用于航空电子测试测量领域(03-05)
- 实现射频信号源的低相位噪声及高速频率切换的共存(03-05)
- 相位噪声和抖动对系统性能的影响(03-29)
- 测试系统相位噪声或抖动容限的方法(05-27)
- 相位噪声的含义和测量方法(12-23)
- 利用R&S的电平控制探头产生大动态高准确度信号(10-06)