微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络业界新闻 > 全面推进新一代数据中心

全面推进新一代数据中心

时间:06-07 来源:作者:Manish Muthal,LSI 企业战略市场营销部总监 点击:

创新与变革

在过去,条条道路通数据中心。

企业数据中心作为网络、存储和计算服务的配置点,应位于关键任务功能区域的中心,原因很简单:为成千上万的用户提供大规模、集中化服务的成本如此之高,只能通过物理配置所需资源的方法进行管理。

如今,所有这一切已经发生了改变。随着对运作效率、可持续业务操作、动态业务多元化和成本竞争力的要求不断增长,尽管数据中心的角色与过去相差无几,但其发挥作用的方式却在快速地演进发展。

数据中心将经历三个演进发展阶段。首先是计算基板的演进,具体包括服务器的虚拟化和通过虚拟机的实时移植来移动负载和应用。其次是存储基板的演进,如存储资源的全局化和虚拟化以及存储区域网络 (SAN) 和网络附加存储 (NAS) 的功能性融合。最后,在第三个阶段,我们发现有必要进行底层网络基板的演进。

要实现这三个阶段的变革并获得优势,网络基板的演进必须与计算域和存储域的变革同步。企业数据中心必须找到可有效增强营运效率、存储容量和处理速度,同时降低成本的途径。新一代数据中心可满足所有这些需求,而且可提供用以确保其长期关联性的增长和扩展特性。

优化网络基板

当数据中心首次被设计出来时,其目的旨在为大量用户提供访问数量相对较少的通用应用的途径。这些应用基于简单的命令-响应交互模型之上,可处理基于文本的数据。

其结果是,底层网络的设计相对初级,而且依靠传统服务提供商或企业通常使用的第 2 层(交换)和第 3 层(路由)设备。但是,对于当今的媒体密集型流量而言,这种架构的局限性迅速体现出来,不仅会导致可用传输资源和交换资源的利用效率低下,还会给虚拟机的移动性造成不良影响,而这种移动性功能对于多样化、动态提供的应用和服务的可用性来说至关重要。这种差强人意的网络架构会增加数据中心的 CAPEX、 OPEX 和功耗,所有这些都违背了新一代数据中心的设计宗旨。

统一结构

当今,部署在数据中心服务器机架上的典型服务器都配有 2 个或者 3 个高功耗适配器,用以连接网络(以太网)、存储(光纤通道)和集群(InfiniBand 或者专有互联)3 个完全不同的结构中。这 3 种结构的互连要求差异很大:网络互连能够容忍数据包丢失和高时延;存储互连需保证无数据包丢失,而集群互连则需要以最低的时迟协助进程间通信。这些截然不同的结构导致了"网络蔓延"现象的出现,即数以万计的线缆通过成百上千的网络交换机、路由器和应用设备,将成千上万的服务器和存储设备连接在一起。所有这些必然会导致功耗与冷却成本的增加,以及管理这些结构所需的 CAPEX 和 OPEX 成本的增长。

10G 以太网的出现,加之行业为满足存储和集群互联需求而对以太网协议进行的关键扩展,将使现有结构融合为基于以太网的统一整合型网络结构。这种结构将提供对其所支持的存储和处理资源的无缝访问。从纯物理资源的角度来看,由于该结构将适配器、线缆和交换机等资源进行了整合,因而可以降低新一代数据中心的营运成本和用电成本。

扁平网络
当今的数据中心网络采用的是针对企业网和服务提供商网络开发的传统 L2 和 L3 网络设备(交换机和路由器)。这种传统设备无法为满足新一代数据中心的严格要求而进行全面扩展。控制协议的可扩展性问题导致资源利用效率低下(链路、交换机、网络)、L2 VLAN 和 L3 子网等限制性拓扑结构,以及严重超额的层级架构,这一切都会严重限制虚拟机的移动性,以及随之而来的移动工作负载和动态提供应用的能力。这些问题会在网络性能和功耗方面导致不尽人意的结果,并会对计算和存储虚拟化所需的关键优化工作造成干扰。

在过去几年里,我们看到专用于 L2 和 L3 以太网交换的商用芯片的出现。这些交换芯片可满足新一代数据中心的独特要求,并提供多路负载均衡、主动拥塞管理和可扩展结构拓扑等增强性能,从而能够在链路、交换机和网络层面上显著改善资源的利用效率。

控制层协议的复杂性和专有实施将被可扩展的全新开放式控制协议管理栈所取代,该管理栈甚至可与数据层完全分离。控制层的可扩展性能够扩展出数以万计的节点,从而实现贯穿整个数据中心的、无缝与实时的虚拟机迁移。

所有这些数据层和控制层的增强功能都将促成跨整个数据中心的大型、扁平 L2网络结构的诞生。数据中心网络基板的"扁平化"可实现将数据中心网络彻底商品化进而从根本上改变数据中心的经济性。

边缘的分布式智能
与常规 L2 / L3 交换设备相似,数据中心的各种"智能化"设备(负载均衡器、安全设备、应用加速器等)也采用可纵向扩展架构,现已成为严重的可扩展性瓶颈。这些设备会在网络中造成阻塞点,并进一步限制在整个数据中心内实现虚拟机的无缝实时移植这一最终目标的实现。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top