微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 测试测量 > 多天线终端测试方法的演进、理论与实践

多天线终端测试方法的演进、理论与实践

时间:07-29 来源:广播与电视技术 点击:

GSCM,Geometry based Stochastic Channel Model), 在大量的实际信道测量工作的基础上而建立的基于几何的信道模型,如SCM(E)[3][4], WINNER [5],及IMT-Advanced [6],经过试验和理论的验证,得到了广泛的认可和使用。

图1、信道模型的分类

GSCM 类信道模型的重要特点是可以将天线与传播环境分离[8],与此相反基于相关性矩阵的信道模型则无法将信道与天线特性分离,所以原则上无法用于重建测试终端性能的信道模型——但TGn 模型[7]虽然基于相关性矩阵,其中含有几何信息的描述,这使得在MIMO OTA 中复现TGn 变为可能。换句话说,在MIMO OTA 多探头方法当中,信道的重建是基于各来波特性进行合成,这些来波可以具有各自的时延、多普勒频移,到达角(AoA)、离开角(AoD)等,合成后将在终端天线单元阵列上体现出信道的空域相关性,及与信道几何特性相关的多普勒谱——芯片对这些信道特性的辨析与优化,最终将影响到终端性能。[3][4][5][6] 均属于此类信道模型。

1.2、SCM 与SCME 模型

提到现代MIMO 信道建模,尤其是GSCM 信道模型,我们不得不提到3GPP SCM(Spatial Channel Model)模型[3]及欧洲WINNER(Wireless World INitiative NEw Radio)项目[5]。在2003 年3GPP TR25.996 描述的SCM 模型当中,传统的TDL(Tap Delay Line)模型被进一步解析为以簇来描述的CDL(Cluster Delay Line)模型。SCM 中定义了6 束来波,每一束被称为一个簇(Cluster),每一簇来波由20 个子径(sub-path)构成,每个簇除了定义了各自的AoD 和AoA 以外,还根据实际信道测试的结论,定义了水平面上的能量分布,如拉普拉斯分布,即角度功率谱(PAS,Power Azimuth Spectral),其方差被定义为角度扩展(AS,Angular Spread);同时,每一簇模型具有各自的AoA,AoD,时延,多普勒谱等特性。SCM 比较好地贴近了实测数据,并且能够从时域、频域、空间域及极化域反映MIMO 信道的特点,图2 中对SCM 模型的参数进行了简介[3]

图2、3GPP TR 25.996 中信道模型及其参数

在3GPP TR 25.996 中的参数说明:

ΩBS:基站天线阵列的方向, 以地理北为参考方向,定义为其天线阵列的法线与北向的夹角。
 
θBS:基站与移动台之间的直射径(LOS,Line Of Sight)出发角(AoD,Angular of Departure),定义为直射径到基站天线阵列法线的夹角。
δn,AoD:第n(n = 1 …N) 径出发角AoD ,定义为与其与LOS AoD 的夹角。
Δn,m,AoD:第n 径的第m(m = 1 …M) 条子径相对δn,AoD的偏移量。
θn,m,AoD:第n 径的第m 条子径的绝对AoD,定义为其与基站天线阵列法线夹角。
ΩMS:移动台天线阵列的方向, 以地理北为参考方向,定义为其天线阵列的法线与北向的夹角。
θMS:基站与移动台LOS 与移动台天线阵列法线方向的夹角。
δn,AoA:第n(n = 1 …N) 径到达角AoA (Angular ofArrival),定义为与其与LOS AoA 的夹角 。
Δn,m,AoA:第n 径的第m(m = 1 …M) 条子径相对δn,AoA的偏移量。
θn,m,AoA:第n 径的第m 条子径的绝对AoA,定义为其与移动台天线阵列法线夹角。
v :移动台的移动速度矢量。
θν :速度矢量角,定义为移动台运动方向与天线阵列法线方向的夹角:θν=arg(v)。

随着通信技术的不断发展,带宽的增大提升了系统对信道时延的解析度,从而引起频域相关性的变化,原3GPP SCM模型中针对5MHz 带宽的CDMA 系统在2GHz 工作频率建立的信道模型显得有所不足,也就是说,对于带宽的提升,需要进行一些改进使得在信道模型中能够体现出带宽变化对信道相关性的影响。2005 年,由来自瑞士、德国、芬兰的信道研究者在[9] 中提出了向前兼容SCM 模型的扩展模型SCME,比较好地适应了新技术带来的对信道模型的要求。一般来说,系统的带宽越宽,可以看做其可辨识的时延径数越多,即信道模型中默认同一径所经历的是平衰落(Flat Fading),因此,对于SCM 模型定义的5MHz带宽下的6 径模型,SCME 模型通过将每一径扩展为三个径(Mid-Path),使得更宽带宽系统的信道模型能够体现出频率选择性衰落,或者说,增大了每根径的时延扩展。SCM、SCME 及WINNER 信道模型之间的比较,可以参考文献[10]。

参考图2 的参数定义,SCM 模型信道冲击响应(CIR,Channel Impulse Response)在数学上可以如下推导,类似MIT老教授R.G. Gallager 在参考文献[11] 及David Tse 在参考文献[12] 中的阐述,一般来说,一个线性时变系统

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top