数据仓库建设的成功之道
数据仓库系统需要从如下几个方面努力:
数据
其实数据的问题不仅仅是质量问题。但是质量问题永远是其中最重要的一个。企业的数据质量问题一直都存在,但是数据仓库系统的建设引发了人们对于其更清楚地认识,很多没有建设数据仓库系统的企业同样也存在数据质量问题,只是可能还没有意识到。如果一个企业可以在数据仓库建设之前便对数据质量问题加以重视,并采取适当行动,无疑便有了一个好的开始。
数据的另一个问题是数据过载的问题,现在来谈数据过载似乎有点早,但其实对于电信、银行、保险等行业来讲,对这一点应该有足够的重视。这些行业本身的业务系统便是海量数据系统,而数据仓库系统通常都要存储比业务系统多得多的历史数据,通常会是12个月的历史数据,而且,数据在进入数据仓库后,为了提高展现和分析的效率,会生成部分冗余和汇总的数据,30%的膨胀率对于数据仓库系统而言很平常。所以,永远需要把你需要用来分析的数据加载到数据仓库当中,否则数据仓库或许会变为垃圾仓库。
业务问题选取合适,商务目标明确
企业在实施数据仓库建设之前,可以对数据仓库的长期建设提出一个远景规划,但是一旦真正进行数据仓库建设,就一定要建立明确的商务目标,明确数据仓库系统所需要回答的业务问题。有了明确的业务问题至少可以让建设人员对与数据仓库所需要达到的目标有一个清楚地认识。
不要依靠工具
事实上,ETL、OLAP这些工具发展的年头其实相对来讲都不算长,所以,要想找一个可以完全满意的工具其实很不容易,但这些都不是关键。最起码,一个成功的数据仓库系统,应该是在明确了各个阶段的技术框架后再来选择合适的工具。所以不要依靠工具,而应该依靠合适的技术框架。
系统建设纳入企业战略规划中
这个说法看起来很大。但其实很有必要。通过一个成功的数据仓库系统能够发现企业中隐藏的成本和潜在增加收入的机会,让数据仓库系统成为企业运作的一部分,才能体现数据仓库系统本身的价值。因此当经营者们在考虑企业的战略目标时,同时就应该考虑,怎样利用数据仓库系统来进行日常的经营分析,怎样利用数据仓库系统来追踪影响战略目标的关键业绩指标?怎样利用数据仓库系统来辅助企业决策?只有将数据仓库系统变为日常决策和经营的一部分,他才是一个真正成功的商业智能系统。
- 蓝色基因GL-1120服务器突破1U服务器性价比极限(02-23)
- Maxim推出低功耗的高速PCIe 2.0无源开关(03-13)
- NI推出高精度多功能USB接口数据采集设备(04-05)
- Teradata为业务用户提供增强的分析能力(06-08)
- Teradata倾力打造世界一流的数据仓库(09-21)
- Teradata实验室推出创新的数据仓库概念(10-08)