软件无线电技术简介及特点应用
AD优化技术。
3)A/D部分
对A/D 的要求主要是采样速率和位数。现有的A/D还不能同时满足速率与采样位数的要求。解决方法 :一方面考虑用多个高速的采样保持电路和ADC ,然后通过并串转换将量化速度降低 ,以提高采样分辨率 ;另外也可考虑研究适合于低分辨率、高采样率的A/D 编码调制方案。
4)高速并行DSP
数字下变频 (DDC)是A/D 变换后首先要完成的处理工作 ,包括数字下变频、滤波和二次采样 ,是系统数字处理运算量最大的部分 ,也是最难完成的部分。为了较好地进行滤波等处理 ,需要每采样点100次操作 ,对于一个系统带宽为10MHz的系统 ,采样频率要大于25MHz ,这就需要2500 MIPS的运算能力 ,这是现有的任何单个DSP无法完成的 ,故必须采用高速并行DSP组成的多处理器模块(MCM )或专用集成电路。数字下变频后的高速信号处理部分主要完成基带处理、比特流处理和信源编码等工作。
5)信令处理
软件无线电用于实现多模互联时 ,需实现通用信令处理 ,因此有必要把现有的各种无线信令按软件无线电的要求划分成几个标准的层次 ,开发出标准的信令模块 ,研究通用信令框架。
4.软件无线电的特点及其应用
软件无线电最突出的特点是 :
(1)软件无线电具有完全可编程特性 ,包括可编程的无线波段、信道接入方式、信道调制、数据速率等 ,通过软件提供信令、控制和操作、管理和维护功能。
(2)A/D和D/A尽可能地向RF靠近 ,即尽可能早地将接收到的射频模拟信号数字化 ,尽可能晚地将发送的数字信号变换为射频模拟信号 ,以便充分利用DSP器件的速度和软件资源 ,尽量通过软件编程完成从信源基带直至射频的波形变换和相关处理。软件无线电台遵循开放平台的设计思想 ,采用模块化结构 ,方便硬件模块更换和软件升级。物理、电气接口的技术指标符合高性能的VME总线标准 ,满足一般协议如信令格式 ,线路自动建立及相关算法等要求。新业务的增加仅需在电台中加载新的软件模块即可实现 ,从而降低了通信设备的成本 ,改善了性能。因此这样的一个体系结构具有非常大的通用性 ,可用来实现多频段、多用户、多体制的通用无线通信系统。
由于软件无线电的这些特点决定了其应用具有以下特征 :业务多样化 ;优越的低截获概率、低探测概率、抗干扰性能 ;自动选择通信模式 ,无感觉完成通信联络 ;可作为网关站加入全球栅格通信网。例如在移动通信或PCS中 ,它可解决传统基站和移动终端的单一模式而造成的不能兼容问题 ,使基站和移动终端能够满足多种标准 ,能应付当前和将来复杂的通信模式和信令结构。
5.结束语
目前软件无线电更多地是以一种概念和猜想的形式出现的 ,具体的定义和体系结构尚无定论 ,然而随着对其研究工作的深入展开 ,通信领域必将经历类似于个人微机在80-90年代所经历的变革。
软件无线电 相关文章:
- 使用NI USRP平台实现射频信号录制和回放操作演示(03-28)
- NI LabVIEW和NI USRP硬件加快了认知无线电研究(09-23)
- 基于USRP的调频收音机和遥控车钥匙(09-25)
- SDR论坛发起第二届软件无线电大赛,全球学生团队将同台竞技(03-19)
- 如何选用软件无线电结构设计器件(07-10)
- 基于软件无线电的卫星通信模拟源设计(09-27)