微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 测试测量 > 数字工程师需要掌握的射频知识

数字工程师需要掌握的射频知识

时间:09-22 来源:mwrf 点击:

\

做为一名高速数字电路设计或测试的工程师,仅仅借助于传统的时域方法去对信号和传输通道进行研究会面临很多制约。数字工程师需要掌握哪些射频知识呢?让我们分两期带大家去了解一下。

*** 上篇 ***

一、前言

随着人们对于海量数据传输和存储的需要,越来越多的数字总线数据速率达到了Gbit/s以上,比如HDMI的数据速率达到3.4Gb/s,USB3.0 的数据速率达到5Gb/s,SATA的数据速率达到6Gb/s,PCIE3.0的数据速率达到8Gb/s,通信中也越来越多采用10Gb/s或25Gb/s的速率进行信号传输。这些数字信号的数据速率已经达到甚至超过了我们传统上所说的射频或微波的频段,真实的数字信号在传输过程中,也越来越多地表现出其微波电路的特性。

在对这些高速信号进行分析时,传统的时域分析方法面临精度不够以及分析手段欠缺等问题,而射频微波领域的频域的分析手段则非常成熟和完善。因此,对于高速数字信号的分析和测量也越来越多地开始采用一些射频或微波的分析方法。

二、数字信号的带宽

要进行数字信号的分析,首要的原因是真实传输的高速数字信号已经远远不是教科书里理想的0/1电平。真实的数字信号传输过程中一定会有一些(甚至很严重的)失真和变形。

\

图1. 理想和真实数字信号的差异

要进行数字信号的研究,首先要得到真实的数字信号波形,这就涉及到使用的测量仪器问题。观察电信号的波形的最好工具是示波器,当信号速率比较高时,一般所需要的示波器带宽也更高。如果使用的示波器带宽不够,信号里的高频成分会被滤掉,观察到的数字信号也会产生失真。很多数字工程师会习惯用谐波来估算信号带宽,但是这种方法不太准确。

对于一个理想的方波信号,其上升沿是无限陡的,从频域上看它是由无限多的奇数次谐波构成的,因此一个理想方波可以认为是无限多奇次正弦谐波的叠加。

\

但是对于真实的数字信号来说,其上升沿不是无限陡,因此其高次谐波的能量会受到限制。比如下图是用同一个时钟源分别产生的50Mhz和250MHz的时钟信号的频谱,我们可以看到虽然输出时钟频率不一样,但是信号的主要频谱能量都集中在5GHz以内,并不见得250MHz的频谱分布就一定比50MHz的大5倍。

\

图2. 同一信号源产生的不同频率时钟信号的频谱

对于真实的数据信号来说,其频谱会更加复杂一些。比如伪随机序列(PRBS)码流的频谱的包络是一个Sinc函数。下图是用同一个发射机分别产生的800Mbps和2.5Gbps的PRBS信号的频谱,我们可以看到虽然输出数据速率不一样,但是信号的主要频谱能量都集中在4GHz以内,也并不见得2.5Gbps信号的高频能量就比800Mbps的高很多。

\

图3. 同一信号源产生的不同速率数字信号的频谱

频谱仪是对信号能量的频率分布进行分析的最准确的工具,所以数字工程师可以借助于频谱分析仪对被测数字信号的频谱分布进行分析。当没有频谱仪可用时,我们通常根据数字信号的上升时间去估算被测信号的频谱能量:

Maximum signal frequency content = 0.4/fastest rise or fall time (20 - 80%)

Or

Maximum signal frequency content = 0.5/fastest rise or fall time (10 - 90%)

三、传输线对数字信号的影响

通过前面的研究我们知道数字信号的频谱是分布很宽的,其最高的频率分量范围主要取决于信号的上升时间而不仅仅是数据速率。当这样高带宽的数字信号在传输时,所面临的第一个挑战就是传输通道的影响。

真正的传输通道如PCB、电缆、背板、连接器等的带宽都是有限的,这就会把原始信号里的高频成分销弱或完全滤掉,高频成分丢失后在波形上的表现就是信号的边沿变缓、信号上出现过冲或者震荡等。

另外,根据法拉第定律,变化的信号跳变会在导体内产生涡流以抵消电流的变化。电流的变化速率越快(对数字信号来说相当于信号的上升或下降时间越短),导体内的涡流越强烈。当数据速率达到约1Gb/s以上时,导体内信号的电流和感应的电流基本完全抵消,净电流仅被限制在导体的表面上流动,这就是趋肤效应。趋肤效应会增大损耗并改变电路阻抗,阻抗的改变会改变信号的各次谐波的相位关系,从而造成信号的失真。

除此以外,最常用来制造电路板的FR-4介质是玻璃纤维编织成的,其均匀性和对称性都比较差,同时FR-4材料的介电常数还和信号频率有关,所以信号中不同频率分量的传输速度也不一样。传输速度的不同会进一步改变信号中各个谐波成分的相位关系,从而使信号更加恶化。

因此,当高速的数字信号在PCB上传输时,信号的高频分量由于损耗会被销弱,各个不同的频率成分会以不同的速度传输并在接收端再叠加在一起,同时又有一部分能量在

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top