微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络业界新闻 > 基于高速传输技术的OFDM系统设计

基于高速传输技术的OFDM系统设计

时间:01-28 来源:CHINAECNet 点击:

]最高工作频率为200MHz,输出中频频率范围为0~80MHz;内部集成半带滤波器、CIC(CascadedIntegrator Comb)滤波器, 反SINC滤波器和高速的14位数/模转换器,其核心是一个相位连续的直接数字频率合成器DDS (Direct Digital Synthesizer)。在该方案中,AD9857工作在正交调制模式,其32位频率控制字使输出频率的最高精确度为:SYSCLK(系统时钟)除以232。

正交数字下变频器采用ADI公司的AD6654。AD6654[5]内部集成了一个14位、92.16Msps的模/数转换器和4/6通道的数字下变频器。每个通道可独立配置。数字下变频内部集成了频率变换器、可编程级联梳状滤波器(CIC)、2个滤波器组和数字自动增益控制。其中:频率变换是通过32位数控振荡器实现的;CIC实现1~32倍的抽取;2个滤波器组包括FIR滤波器和2倍抽取的半带滤波器。输入的中频模拟信号经过ADC和频率变换后,使用滤波器组进行滤波和抽取,最后并行输出正交基带数字信号。输入中频信号频率最高可到200MHz,此时,使用欠采样技术。

3 参数设计及调制

信号波形作者采用PCB八层板设计,实现了该系统的硬件平台,并在此平台基础上实现了高速OFDM传输和常规单载波调制解调,形成了一个通用宽带高速调制解调平台。设计的目的是要在该平台上实现现有的全部物理层的算法,特别是实现实时OFDM传输系统。对OFDM系统提出的指标要求如表1所列。

图3给出了32路子载波OFDM在上述参数设计下的已调信号波形(见图3(a))及其功率谱(见图3(b))。图中子载波调制方式为QPSK,码元频率为中频频率36.864MHz,带宽是2.048MHz。图4给出了一种单载波调制制式(以π/4QPSK为例)的时域波形(见图4(a))及其功率谱(见图4(b))。另外,数字调制方式的码元频率可达2MHz(即对于四相调制,比特速率可达4 Mbps;对于32QAM调制,比特速率可达10 Mbps),且子载波调制方式、比特(或码元)速率、输出中频均可调。

图3 实测OFDM波形

图4 实测π/4-QPSK波形

4 结论

本文所提出的方案有以下特点:

①基于双DSP的结构,可工作在双工方式,同时完成信号的发射和接收;工作在TDMA方式下或半双工时,DSP可通过Link口进行高速通信,有利于并行处理,以提高传输速率。DSP利于基带信号的实时处理,可以实现高速调制解调。

②变频器具有频率分辨率高、频率变化速度快、相位连续、易于数字控制等特点。采用DSP和变频器的方案,不仅可以实现模拟调制解调,而且可以实现各种数字调制解调,兼容传统调制解调和新型调制解调方式。

③在DSP和变频器之间使用FPGA,实现突发信号的同步捕获,可以分担DSP的部分任务,从而提高系统的实时性。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top