微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 测试测量 > 射频波束赋形技术改善TD-LTE蜂窝小区边缘性能

射频波束赋形技术改善TD-LTE蜂窝小区边缘性能

时间:10-27 来源:mwrf 点击:

自很早以前开始,多天线技术便已在移动无线系统中得到使用。在早期的基站发射和车载移动台接收时期,大蜂窝小区网络拓扑结构中多路径传播会产生选择性衰落,因而影响到信号质量,特别是在市区内这样的问题更加严重。以往的办法是使用基站发射和车载接收机天线分集来解决这个问题。随着手机变得越来越小,车载通信装置经过简化而开始采用蓝牙音频连通性技术,移动设备中的接收分集已经逐渐淘汰。不过,这一趋势很快将发生变化:最新的无线局域网实施使用了多天线空间流,能够增加发射带宽和速度。随着实施这一先进技术的低成本硬件的问世,首次发布的3GPP LTE(第三代合作伙伴计划长期演进)标准,特别是其TDD(时分双工)版本已经提议并实施了各种多天线技术。

再次说明一下,基础的无线信道使用的是单路发射和单路接收天线,称为SISO(单路输入单路输出)。这种简单的无线信道设定了信号传输性能的基准,在此基础上可以对所有更复杂的传输配置进行测量。

SIMO(单路输入多路输出)提供了比SISO 基准更大的接收天线冗余,支持在接收机中使用接收分集技术,例如最大比合并等。这可以改善在设备接收机上观测到的SINR,并有助于改善信道衰落条件下的性能。

MISO(多路输入单路输出)提供发射天线冗余,像在LTE 情况中一样,支持使用Alamouti符号编码或空频分组编码(SFBC)等发射分集技术。与SIMO 一样,这也可以改善在设备接收机上观测到的SINR,并可帮助提供保护,防止信道衰落。

无论是SIMO 还是MISO 都不能提高数据吞吐量,但它们可以降低误码率,从而减少需要重发的数据量。

MIMO(多路输入多路输出)提供额外的发射和接收天线冗余。如果将相同的数据发送到发射天线,这一冗余可用来改善上面所述使用相同发射和接收分集技术的设备接收机上的SINR。或者可以牺牲部分或全部可能的SINR 性能改善,以便获得更高的频谱效率。空间多路复用发射技术(使用发射天线发送独立数据流)可以为单一用户提供更高的数据吞吐量(SU-MIMO 或单用户MIMO),或增加系统蜂窝小区容量(MU-MIMO 或多用户MIMO)。

除了这些分集和空间多路复用技术之外,还可以使用多天线配置将发射或接收集中在特定方向上。这种技术称为波束赋形,取决于具体应用,可以采用固定波束赋形或可变波束赋形,并能够改善系统性能。波束赋形技术可在许多不同频率的应用中使用,包括声纳和地震学、声学、无线通信、射电天文学和雷达等。

总之,无论何时从两个或更多个空间分离的发射点发送相同的信号,都会出现干扰方向图。发射波束赋形就是利用这种干扰方向图进行工作的。无论何时利用波束赋形技术从两个或更多个空间分离的接收点接收相同的信号,都可使用同样的原则。

举一个简单的例子,当使用单个全向天线发射射频无线信号时,产生的信号相对场强如图1 (a) 中的蓝色实线所示。

为了能够发射波束赋形信号,需要添加另一个同样的全向天线阵元,与第一个天线阵元距离间隔半个射频载波波长,见图1 (b)。在此例中,两个天线阵元都传输待发射信号信息符号的相同副本。我们可以立即看到,在大约0°方位角的方向上发生了相长(同相)干扰,合并后的场强增加,在这个方向上产生有效相干信号功率增益。相反,在大约+/-90°的方向上会发生相消(异相)干扰,合并后的场强会降低或衰减。

在同一个轴上与前两个天线阵元间隔半个射频载波波长的位置上添加第三个天线阵元,可改善合并后相对场强的空间选择性,见图1 (c)。在我们的例子中,天线单元经过同极化、相关,并沿着单一天线阵元轴向均匀分隔,构成了一个均匀线性阵列(ULA)天线系统。在相对ULA 宽边为0°的方向上的单一主瓣信息清晰可见。在这个方向上会发生最大相长(或同相)干扰,在合并后的场强波束方向图中产生最大的功率增益。现在我们可以看到两个不同的功率衰减零点(null)的信息,主瓣一侧位于+/-42 °方位角上。这两个最小功率位置表示在合并后的场强波束方向图中发生了最大相消(或异相)干扰的方位方向。

图1. ULA 波束赋形实例图

中文字中英对照

Main lobe = omnidirectional
1 antenna element
Main lobe = 0 deg azimuth
# nulls =1
2 antenna elements
0.5 wavelength separation
0 deg phase shift per ant element
主瓣= 全向
1 个天线阵元
主瓣= 0°方位角
零点数量= 1
2 个天线阵元
间隔0.5个波长
每个天线阵元相移0 °

最后向ULA 添加第4 个天线阵元可进一步改善主瓣选择性,见图1(d)。功率零点的数量也从两个增加到三个。两个零点现在位于+/-30

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top