音频系统在手机与个人数字助理 (PDA)中的应用与探讨
时间:04-14
来源:电子产品世界
点击:
音频功率放大器在便携式产品中的考虑因素
1)较高的PSRR
必须具有较高的Power supply rejection ratio (PSRR),可以避免受到电源与布线噪声的干扰。
2)快速的开关机(Fast turn on & off)
拥有长时间的待机时间,是手机或个人数字助理的基本要求,AB 类音频放大器的效率约为50%至60%,D类音频放大器的效率可达85%至90%。不管使用何种音频放大器,为了节省功率消耗,在不需要用到音频放大器时,均需进入待机状态。然而当一有声音出现时,音频放大器必须马上进入开机状态。
3)无"开关/切换噪音" (Click & Pop)
开关/切换噪音" 常出现于音频放大器进入开关机时,或是由待机回复至正常状态,或是217 Hz手机通信信号时。手机或个人数字助理的使用者绝不会希望听到扰人的噪音,将"Click & Pop"消除电路加入音频放大器中,是必备条件。
4)较低的工作电压
为增长电池使用时间,常需低至1.8V,仍可工作。
5)低电流消耗与高效率
使用CMOS工艺的IC,可降低电流消耗。有时需选择D类音频放大器,目的是延长手机或个人数字助理的工作时间。
6)高输出功率
在相同工作电压下具有较高的输出功率,即输出信号的摆幅越接近Vcc与GND时,其输出功率越高。
7)较小的封装 (uSMD)
手机或个人数字助理的外观越来越小巧,使得IC封装技术越来越重要,uSMD为现今较常用到的封装技术。
输出功率的计算
单端式(Single-end)放大器如图1所示,其增益为:
Gain = Rf/Ri
Rf:反馈电阻,Ri:输入电阻
由输出功率 = (VRMS)2/Rload,VRMS= Vpeak /21/2
因此单端式(Single-end)放大器输出功率=(Vpeak)2/2Rload
桥接式(BTL)放大器如图2所示,由两个单端式(Single-end)放大器以相差180 组成,故其增益为:
Gain = 2Rf/Ri
Rf:反馈电阻,Ri:输入电阻
由输出功率 = (VRMS)2/Rload,桥接式VRMS= 2 Vpeak /21/2
因此:桥接式输出功率 = 2 (Vpeak)2/Rload= 4 单端式放大器输出功率
图2 桥接式放大器与作用于喇叭正负端的波形
输入与输出耦合电容值的选择
如图1,输入电阻与输入耦合电容形成一个高通滤波器,如欲得到较低的频率响应,则需选择较大的电容值,关系可用以下公示表示。
fC = 1/2 (RI)(CI)
fC:高通滤波截止频率,RI:输入电阻
CI:输入耦合电容值,此电容用来阻隔直流电压并且将输入信号耦合至放大器的输入端。
在移动通信系统中,由于体积的限制,即使使用较大的输入耦合电容值,扬声器通常也无法显示出50Hz以下的频率响应。因此,假设输入电阻为20K ,只需输入耦合电容值大于0.19 F即可。在此状况下,0.22 F 是最适当选择。
就输出耦合电容值的设定而言,同图1中,如欲得到较佳的频率响应,电容值亦需选择较大的容值,关系可用以下公式表示:
fC=1/2(RL)(CO)
fC:高通滤波截止频率,RL:喇叭(耳机)的电阻,CO:输出耦合电容值
例如,当使用32 的耳机,如希望得到50Hz 的频率响应时,则需选择99 F的输出耦合电容值。在此状况下,100 F是最适当选择。
散热(Thermal)考虑
在设计单端式(Single-end)放大器或是桥接式(BTL)放大器时,功率消耗是主要考虑因素之一,增加输出功率至负载,内部功率消耗亦跟着增加。
桥接式(BTL)放大器的功率消耗可用以下公式表示:
PDMAX_BTL= 4(VDD)2/(2 2RL)
VDD:加于桥接式(BTL)放大器的电源电压,RL :负载电阻
例如,当VDD=5V,RL=8 时,桥接式放大器的功率消耗为634mW。如负载电阻改成32 时,其内部功率消耗降低至158mW。
而单端式(Single-end)放大器的功率消耗可用以下公式表示:
PDMAX_SE= (VDD)2/(2 2RL)
VDD:加于单端式(Single-end)放大器的电源电压,RL:负载电阻,亦即单端式放大器的功率消耗仅为桥接式放大器的四分之一。所有的功率消耗加起来除以IC的热阻( JA)即是温升。
布线(Layout) 考虑
设计人员在布线上,有一些基本方针必须加以遵守,例如
1)所有信号线尽可能单点接地。
2)为避免两信号互相干扰,应避免平行走线,而以90 跨过方式布线。
3)数字电源,接地应和模拟电源分开。
4)高速数字信号走线应远离模拟信号走线,也不可置于模拟元件下方。
3D增强立体声的应用
大部分人认为,"3D音效"既不是单声道,也不是双声道,它是一种音频的处理技术,使聆听者在非实际的环境下,感觉到发出声音的地点,这就必须非常讲究扬声器(喇叭)的放置位置与数目。但是在手机与个人数字助理中,无法放置如此多的扬声器,因此发展出以两个扬声器加上运用硬件或软件的方式来模拟"3D音效",就是所谓的"3D增强立体声音效"(3D Enhancement) 。
图3为3D增强立体声的音频次系统方块图,用于立体声手机或个人数字助理中,此音频次系统由下列几个部份组成:
1)后级放大器部分,包括一个立体声扬声器(喇叭)驱动器,一个立体声耳机驱动器,一个单声道耳机放大器 (earpiece)和一个用于免提听筒的线路输出 (line out) (例如汽车的免提听筒电话输出)。
2)音量控制,可提供分为 32 级的音量控制,而且左、右及单声道的音量均可独立控制。
3)混音器,用来选择输出与输入音源的关系,可将立体声及单声道输入传送并混合在一起,将这些输入分为 16 个不同的输出模式,使系统设计工程师能够灵活传送混合单声道及立体声音频信号,不会限定信号只能传送给立体声扬声器或立体声耳机。
4)电源控制与"开关/切换嘈音" 抑制电路。
5)3D增强立体声使用的是硬件的方式。
6)使用I2C 兼容接口加以控制芯片的功能。
声音在不同位置传至左右耳朵时,会产生不同相位差。利用此相位差原理和硬件方法,便可以仿真出3D增强立体声音效。即使系统在体积或设备上受到限制,而必需将左右喇叭摆放得很近时,仍然可以改善立体声各个高低声部的定位的种种问题。
图3 3D增强立体声音频子系统方块图
如图3的3D增强立体声方块图所示,一个外接电阻与电容电路用以控制3D增强立体声音效,用两个独立的电阻与电容电路来控制立体声扬声器与立体声耳机,如此可达到最佳的3D增强立体声效果。
在此电阻与电容电路中,3D增强立体声效果的"量"是由R3D电阻来设定的,并且成反比关系,C3D电容用以设定3D增强立体声效果的3dB低频截止频率,在低频截止频率以上才能显现出3D增强立体声效果,增加C3D电容值将降低低频截止频率,其关系可用以下公式表示:
f3D(-3dB)=1/2 (R3D)(C3D)
结论
由于移动电话与个人数字助理已发展为能够提供各种不同娱乐的多功能便携式设备,厂商们尽量采用高保真的音频系统及寿命较长的电池,并使此类便携式电子产品具备立体声喇叭放大器,多种不同的混音,以及3D增强立体声等功能,同时在外型上也尽量轻薄小巧。但其设计范畴仍不脱离以上所述基本原理,这就是本文所要表达的另一目的。
1)较高的PSRR
必须具有较高的Power supply rejection ratio (PSRR),可以避免受到电源与布线噪声的干扰。
2)快速的开关机(Fast turn on & off)
拥有长时间的待机时间,是手机或个人数字助理的基本要求,AB 类音频放大器的效率约为50%至60%,D类音频放大器的效率可达85%至90%。不管使用何种音频放大器,为了节省功率消耗,在不需要用到音频放大器时,均需进入待机状态。然而当一有声音出现时,音频放大器必须马上进入开机状态。
3)无"开关/切换噪音" (Click & Pop)
开关/切换噪音" 常出现于音频放大器进入开关机时,或是由待机回复至正常状态,或是217 Hz手机通信信号时。手机或个人数字助理的使用者绝不会希望听到扰人的噪音,将"Click & Pop"消除电路加入音频放大器中,是必备条件。
4)较低的工作电压
为增长电池使用时间,常需低至1.8V,仍可工作。
5)低电流消耗与高效率
使用CMOS工艺的IC,可降低电流消耗。有时需选择D类音频放大器,目的是延长手机或个人数字助理的工作时间。
6)高输出功率
在相同工作电压下具有较高的输出功率,即输出信号的摆幅越接近Vcc与GND时,其输出功率越高。
7)较小的封装 (uSMD)
手机或个人数字助理的外观越来越小巧,使得IC封装技术越来越重要,uSMD为现今较常用到的封装技术。
输出功率的计算
单端式(Single-end)放大器如图1所示,其增益为:
Gain = Rf/Ri
Rf:反馈电阻,Ri:输入电阻
由输出功率 = (VRMS)2/Rload,VRMS= Vpeak /21/2
因此单端式(Single-end)放大器输出功率=(Vpeak)2/2Rload
桥接式(BTL)放大器如图2所示,由两个单端式(Single-end)放大器以相差180 组成,故其增益为:
Gain = 2Rf/Ri
Rf:反馈电阻,Ri:输入电阻
由输出功率 = (VRMS)2/Rload,桥接式VRMS= 2 Vpeak /21/2
因此:桥接式输出功率 = 2 (Vpeak)2/Rload= 4 单端式放大器输出功率
图2 桥接式放大器与作用于喇叭正负端的波形
输入与输出耦合电容值的选择
如图1,输入电阻与输入耦合电容形成一个高通滤波器,如欲得到较低的频率响应,则需选择较大的电容值,关系可用以下公示表示。
fC = 1/2 (RI)(CI)
fC:高通滤波截止频率,RI:输入电阻
CI:输入耦合电容值,此电容用来阻隔直流电压并且将输入信号耦合至放大器的输入端。
在移动通信系统中,由于体积的限制,即使使用较大的输入耦合电容值,扬声器通常也无法显示出50Hz以下的频率响应。因此,假设输入电阻为20K ,只需输入耦合电容值大于0.19 F即可。在此状况下,0.22 F 是最适当选择。
就输出耦合电容值的设定而言,同图1中,如欲得到较佳的频率响应,电容值亦需选择较大的容值,关系可用以下公式表示:
fC=1/2(RL)(CO)
fC:高通滤波截止频率,RL:喇叭(耳机)的电阻,CO:输出耦合电容值
例如,当使用32 的耳机,如希望得到50Hz 的频率响应时,则需选择99 F的输出耦合电容值。在此状况下,100 F是最适当选择。
散热(Thermal)考虑
在设计单端式(Single-end)放大器或是桥接式(BTL)放大器时,功率消耗是主要考虑因素之一,增加输出功率至负载,内部功率消耗亦跟着增加。
桥接式(BTL)放大器的功率消耗可用以下公式表示:
PDMAX_BTL= 4(VDD)2/(2 2RL)
VDD:加于桥接式(BTL)放大器的电源电压,RL :负载电阻
例如,当VDD=5V,RL=8 时,桥接式放大器的功率消耗为634mW。如负载电阻改成32 时,其内部功率消耗降低至158mW。
而单端式(Single-end)放大器的功率消耗可用以下公式表示:
PDMAX_SE= (VDD)2/(2 2RL)
VDD:加于单端式(Single-end)放大器的电源电压,RL:负载电阻,亦即单端式放大器的功率消耗仅为桥接式放大器的四分之一。所有的功率消耗加起来除以IC的热阻( JA)即是温升。
布线(Layout) 考虑
设计人员在布线上,有一些基本方针必须加以遵守,例如
1)所有信号线尽可能单点接地。
2)为避免两信号互相干扰,应避免平行走线,而以90 跨过方式布线。
3)数字电源,接地应和模拟电源分开。
4)高速数字信号走线应远离模拟信号走线,也不可置于模拟元件下方。
3D增强立体声的应用
大部分人认为,"3D音效"既不是单声道,也不是双声道,它是一种音频的处理技术,使聆听者在非实际的环境下,感觉到发出声音的地点,这就必须非常讲究扬声器(喇叭)的放置位置与数目。但是在手机与个人数字助理中,无法放置如此多的扬声器,因此发展出以两个扬声器加上运用硬件或软件的方式来模拟"3D音效",就是所谓的"3D增强立体声音效"(3D Enhancement) 。
图3为3D增强立体声的音频次系统方块图,用于立体声手机或个人数字助理中,此音频次系统由下列几个部份组成:
1)后级放大器部分,包括一个立体声扬声器(喇叭)驱动器,一个立体声耳机驱动器,一个单声道耳机放大器 (earpiece)和一个用于免提听筒的线路输出 (line out) (例如汽车的免提听筒电话输出)。
2)音量控制,可提供分为 32 级的音量控制,而且左、右及单声道的音量均可独立控制。
3)混音器,用来选择输出与输入音源的关系,可将立体声及单声道输入传送并混合在一起,将这些输入分为 16 个不同的输出模式,使系统设计工程师能够灵活传送混合单声道及立体声音频信号,不会限定信号只能传送给立体声扬声器或立体声耳机。
4)电源控制与"开关/切换嘈音" 抑制电路。
5)3D增强立体声使用的是硬件的方式。
6)使用I2C 兼容接口加以控制芯片的功能。
声音在不同位置传至左右耳朵时,会产生不同相位差。利用此相位差原理和硬件方法,便可以仿真出3D增强立体声音效。即使系统在体积或设备上受到限制,而必需将左右喇叭摆放得很近时,仍然可以改善立体声各个高低声部的定位的种种问题。
图3 3D增强立体声音频子系统方块图
如图3的3D增强立体声方块图所示,一个外接电阻与电容电路用以控制3D增强立体声音效,用两个独立的电阻与电容电路来控制立体声扬声器与立体声耳机,如此可达到最佳的3D增强立体声效果。
在此电阻与电容电路中,3D增强立体声效果的"量"是由R3D电阻来设定的,并且成反比关系,C3D电容用以设定3D增强立体声效果的3dB低频截止频率,在低频截止频率以上才能显现出3D增强立体声效果,增加C3D电容值将降低低频截止频率,其关系可用以下公式表示:
f3D(-3dB)=1/2 (R3D)(C3D)
结论
由于移动电话与个人数字助理已发展为能够提供各种不同娱乐的多功能便携式设备,厂商们尽量采用高保真的音频系统及寿命较长的电池,并使此类便携式电子产品具备立体声喇叭放大器,多种不同的混音,以及3D增强立体声等功能,同时在外型上也尽量轻薄小巧。但其设计范畴仍不脱离以上所述基本原理,这就是本文所要表达的另一目的。
音频系统;PDA 手机;音频功率放大器 相关文章:
- 曹淑敏:Wimax与3G互为补充但面临四个挑战(08-23)
- WiMAX的“青春期综合症”(08-23)
- 无线自组织网络测试平台设计与实现(08-18)
- WiMAX技术优势如何成就市场(08-23)
- WiMAX标准新进展——IEEE批准移动WiMAX标准(08-28)
- 超宽带通信技术及其应用(08-18)