微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > MCU和DSP > 用GaN重新考虑功率密度

用GaN重新考虑功率密度

时间:05-09 来源:3721RD 点击:

功率密度的显著增加需要一种替代方法:

•电源开关的数量

•滤波电感的数量

•电感器的尺寸

•散热片和冷却元件的尺寸

一种替代方案是连续导通模式图腾柱拓扑。这种拓扑结构充分利用了GaN的所有关键特性,最终导致尺寸更小、工作频率更高的设计(图4)。GaN的零反向恢复对于实现该拓扑特别重要。

4. 图腾柱PFC拓扑结构在降低工作频率的同时降低设计尺寸,充分利用了GaN的零反向恢复。

表3总结了这种无桥PFC设计的几个主要优点,并做了进一步阐述:

•电源开关:与双桥拓扑相比,图腾柱PFC替代了两个超结MOSFET和两个仅具有两个GaN器件的SiC二极管。

•滤波电感器:该拓扑结构消除了功率级中的一个庞大的滤波电感。电感器的去除及功率开关数量的减少也提高了整体系统的可靠性。

•尺寸:由于GaN在高得多的开关频率(通常为40至60 kHz条件下的MOSFET的四倍)条件下工作,您可使用较小的滤波电感。此外,GaN的较低开关损耗使得设计人员能够在功率级中显著缩小散热片的尺寸。

•效率:精心设计的图腾柱PFC的高效率达99%以上。为了说明这一点,在整个PFC阶段,1 kW的功耗消耗不到10W。

•成本:由于其现有制造成本,GaN器件的溢价将更高。然而,鉴于此处节省的成本,系统总成本应与现有的MOSFET设计相当。

现代图腾柱设计还利用数字功率控制器进一步提高效率,总谐波失真和其他关键设计参数。数字控制器(如C2000和UCD3138)可以智能地控制功率级操作,实时优化效率,并响应线路和负载条件。

结论
我们见证了需要更高功率的诸如云计算、5G电信基础设施、风电和太阳能电站及电动和混合动力汽车等行业的日益增长的需求。随着硅MOSFET达到停滞期,设计人员正在探索宽带隙技术,如GaN的下一个设计。

如PFC示例所示,GaN不仅提高了效率,而且将电源的尺寸大大降低了30%至50%。您可以在隔离或非隔离的dc-dc转换器、逆变器和其它电源转换子系统中使用GaN,以显著降低功耗、部件数量、重量和尺寸。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top