AMD内部资料:如何通过创新架构和电源技术提升处理器能效
图:不同条件下APU的最低功耗。
AMD的电源管理还可以监控硅片和终端用户设备的温度。根据系统元器件的活动,它可以确定个人电脑或移动设备的温度,从而判断对终端用户来说温度是否过高。因此,在计算密集型任务中,APU可以在保证笔记本电脑或变形笔记本温度不过高的前提下,通过提高处理器频率暂时提高输出功率来提供强大性能。任务完成后,功耗会动态降低,因而器件的温度也会降低。这一做法可以提高总体能效,因为任务执行速度提高了,设备可以迅速切换到空闲模式,同时又能提供迅速响应的体验。
此外,电源管理微控制器还可以实时追踪特定应用的运行状态,确定提高处理器频率可以为其带来多大帮助。不会受益于更高频率(需要更多能量)的应用将工作在低于处理器最大性能的频率,从而避免能量浪费。
AMD最新的APU中集成的另一项功能是围绕处理器运行时进入极低功耗的S0i3状态。该低功耗状态的采用因不同的OEM/平台而异(即可以是联网待机、现代待机或挂起到内存),但是这种状态会让差不多所有的APU硅片的电源关断,同时让所有相关的I/O器件也进入各自的低功耗状态,从而极大地降低平台的功耗。图中展示了在这些条件下APU的电源关断。S0i3状态使平台的功耗水平能够与传统的S3状态(也就是传统上所说的"待机")相当-S3状态的进入和退出会比较耗时,因为它需要操作系统介入。通过动态实现这个过程,在集成电源管理微控制器的控制下,假如系统活动水平足够低,APU就可以以亚秒级的时间帧透明实现与待机相当的功耗水平。这直接意味着可以降低典型应用条件下的平均功耗。
AMD最新推出的产品还具有许多其他面向效率的功能,比如视频和音频加速,AMD开发路线涵盖了自适应I/O优化和压缩技术、更精确的电压管理和基于工作负载的能耗优化等。
微处理器 AMD 能源效率 APU hUMA 电压跟踪 相关文章:
- 性能之路: 可互换的8位与32位微处理器 (06-29)
- 单芯片集成电路优化自适应转向大灯系统的设计 (07-12)
- 基于AT91RM9200微处理器的最小系统设计(07-09)
- 基于模式的SoC设计方法研究 (07-21)
- 基于ARM微处理器LPC2132的智能电动机保护器设计(07-23)
- 如何处理ARM体系下浮点数Middle-Endian问题 (10-19)