微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > MCU和DSP > 基于单片机便携式颜色自适应识别电路的设计

基于单片机便携式颜色自适应识别电路的设计

时间:06-04 来源:OFweek电子工程网 点击:

电压-颜色值存入存储器建立一个数据库;系统运行的时候,会把外界的颜色值和存储的颜色值进行比对,若相同则把存储的对应电压值输出。由于要频繁的读取存储器,该方法的速度比第一种方法慢。通过对比两种方法的优缺点本系统采用第一种方法来实现颜色重现。

  2.2 便携式颜色探测自适应电路硬件图

  本系统的硬件框图如图3所示。主要由4个模块组成:稳压电源模块,颜色传感器模块,单片机处理模块,电压偏移模块和蓝牙通信模块。

图3 便携式颜色探测自适应电路硬件图

  系统中的稳压电源模块可提供两种不同的电压值:9 V的电压偏移模块工作电压和单片机3.3 V的工作电压值(3.3 V也用来驱动颜色传感器、蓝牙模块、存储芯片),模块中采用二极管来防止电源的反接而导致破坏系统的正常工作。

  颜色传感器采用的是TCS230,由于其工作电压为3.3 V,因此直接与单片机进行接口设计,电路结构简单。

  单片机处理模块中采用了EEPROM来存放拟合好的颜色-电压参数值,系统在运行的时候会根据读取的参数值给出颜色-电压拟合函数,并在该函数的控制下进行颜色的重现。

  电压偏移模块主要是负责对电压进行极性的反转和电压的适当放大,由于电致变色器件的变色范围有负电压的出现,因此在本系统单电源供电的情况下必须采用偏移电路实现负极性电压的输出。

  蓝牙通信模块是负责数据的上下位机通信,通过把获取的颜色数据发送给上位PC机,PC机在matlab的处理下,拟合颜色-电压曲线,并把得到的拟合参数发送下位单片机。由于PC机的处理速度快,因此拟合的时间很少,主要的时间是上下位机之间的通信时间。

2.3 便携式颜色自适应识别电路软件设计

  在系统工作之前必须通过软件对系统进行自平衡校准,采用的方法是:通过设置单片机的定时器为固定时间,然后选通三种颜色的滤波器,计算这段时间内TCS230的输出脉冲数,得出一个比例因子,通过这个比例因子可以把这些脉冲数变为255。在实际测试时,使用同样的时间进行计数,把测得的脉冲数再乘以求得的比例因子,然后就可以得到所对应的R、G和B的值。校准后则开始系统的正常工作,程序主要的工作是进行信号的处理包括中值滤波,A/D转换等,在环境颜色的跟踪过程中需要运用一系列的算法来实现对复杂环境的颜色的提取,这需要对设计的程序进行不断调试。

  程序的功能(图4)是程序设计的准则,在本系统的程序设计中,最主要的功能是命令识别和执行,命令用来对数据流的方向进行准确控制,只有通过上下位机的命令二者之间的通信才能顺利完成。系统在命令的控制下实现颜色识别以及重现功能,通过控制对应的输出接口才能输出对应的电压值,实现系统的设计目的。

图4 便携式颜色自适应识别电路软件功能图

  程序的软件框架图则是软件设计的算法的一种体现,本系统的主控程序(图5)主要完成系统初始化、命令流、数据流的统一调度。通过主控程序的调度外围部件能够正常的完成系统的功能要求。

图5 软件框架结构图

  3 便携式颜色识别自适应电路实物图

  按照设计的系统硬件电路图,设计并制作了便携式颜色自适应系统的裸版,如图6所示。电路板采用两层布线。通过对设计的电路进行测试,分析输出的颜色参量,运用matlab对结果进行颜色一电压曲线拟合,并最终在电致变色器件上面显示出了颜色,该颜色和从颜色传感器检测到的颜色一致。表明本电路能实现所要求的功能。

图6 便携式颜色识别自适应电路实物图

  4 结束语

  利用数字式的颜色传感器和单片机为电致变色器件设计了变色状态受外界环境颜色变化的控制电路,电路简单、成本低。由于电路工作时,会首先扫描电致变色器件的变色参数并储存,因此电路能自适应地控制不同变色参数的电致变色器件。此外,采用蓝牙通信方式用来实现上下位机之间的通信,这样下位机的颜色传感器可以方便的探测外界环境,便于提高颜色获取的精度。设计中采取减少电路中AD、DA转换的次数,进一步提高了电路的工作速度。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top