微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > MCU和DSP > 一种用单片机控制的光谱数据采集系统的设计

一种用单片机控制的光谱数据采集系统的设计

时间:05-14 来源:21ic 点击:

2.A/D转换的过程

本系统中,CCD输出信号的重复频率为200kHz,因而,要求模数转换器的速率要高于200kHz。A/D转换器的工作控制不用系统CPU来完成,而是用专用逻辑控制电路完成,包括地址产生器、总线缓冲隔离器、读写控制逻辑电路和数据存储单元。在数据转换过程中,CPU只负责转换电路的启动和检测1帧数据转换是否结束,中间过程无须CPU干预,使对CCD1帧数据转换由逻辑控制电路自动完成。A/D一次采样的工作过程为:①接收光耦同步采集信号;

  ②驱动A/D转换;③单片机查询是否转换完成;④读出数据,存入存储器。转换过程控制程序框图如图5所示。
用光电倍增管对小于10kHz调制频率的慢变化光谱信号的测量,50kHz的采样频率可以满足测量的要求,其采集电路可以适用于各种光电倍增管的输出信号采集。我们选用12MHz的时钟频率,对软件进行优化,其运行的时间为20μs,采样频率为50kHz,可以满足采样的要求。


  3.光电倍增管的高压调整

在光电倍增管应用中,高压的稳定性直接影响测量的精度。一般,光电倍增管的倍增级为10级左右,图6所示为倍增管高压与电流增益之间的电流增益之间的倍增关系。从图6可看出电流增益约与阴极-阳极间所加电压的10 6~10 10成比例。所以PMT的输出对工作电压非常敏感,使用时,必须用高稳定性的高压电源。高压电源的漂移、纹波、温度变化、输出变化、负载变化等的综合稳定度必须优手所要求的光电倍增管稳定度1个数量级。我们选用的是由HAMAMATSU(滨松)公司生产的高压模块,其电压最大漂移量为0.03%h。

为扩大动态范围,须对光电倍增管的高压进行动态调整。图7是控制电压和控制电阻上相应的输出电压的关系曲线。光电倍增管的专用高压模块通过改变高压模块调整端的电压或电阻,来改变输出端的高压。调整电阻用10kΩ电位器,电压调整范围为0~1.4V。


图8所示为滨松公司高压模块的原理框图。

为满足不同的测量要求,需要设置三个量程。一般量程的调整为人工调整电位器,效率较低、精度不好控制。这里我们利用单片机控制可编程数字电位器X9C103来实现调整倍增管高压,图9是X9C103的接线原理图。根据测量输出信号的强弱,相应调整PMT的高压,并将调整的状态通过并口送入计算机。X9C103是一个包含100个电阻单元的电阻阵列。在每个单元之间和任一端都有可以被滑动单元访问的抽头点。滑动单元的位置由片选输入端CS、升/降输入端U/D、增加输入端INC控制。它类似于TTL升/降计数器,总阻值10kΩ、工作时钟250kHz、工作电压+5V,滑动端位置存储于非易失性存储器中,可在上电时重新调用,滑动端位置数据可保存100年。X9C103是固态非易失性电位器,它与机械电位器相比有调节更精确、不受意外影响(振动、污染)、节省空间、易于安装、滑动端位置易于由单片机或逻辑电路控制的优点,是理想的数控微调电位器。三线接口由单片机P0口控制1片74LS374来完成锁存,软件编程实现。


二、应用

为了满足光谱采集的需要,我们设计了相应的信号采集电路,应用单片机控制A/D芯片完成对于两种不同的探测器输出信号的采集。实际应用表明,采集系统的信噪比、采样频率等性能可以满足测量的要求。

  1.用于CCD输出信号采集

采用CCD测量光谱大大缩短了测量时间,减少了外界环境对测量精度的影响。对于闪光灯、荧光和磷光等强度随时间变化的光源,采用CCD测量其光谱分析,能得到精确的测量结果。

单片机在其中要完成的工作是控制CCD时序脉冲的产生和高速A/D采样频率的实现等,其原理框图如图10所示。对于两相线阵CCD,须要在其相关引脚加入适当脉冲才能正常工作,主要有两相时钟脉冲ψA和ψB、转移门ψTG、复位门ψR,并且要输出与CCD输出信号同步的脉冲,作为信号采集的同步触发信号,其主驱动脉冲由单片机控制产生。

CCD将光信号转换成视频脉冲信号后,经差分放大和电平调整电路后,输出满足MAX120输入信号范围的信号(-5~+5V),送入A/D转换器的输入端。逻辑控制电路的输入信号是CCD视频脉冲同步信号、微处理器控制是否进行A/D转换信号、A/D转换器状态信号和数据存储器地址信号,经一定的逻辑运算后输出A/D转换的起始信号、地址产生器的计数信号以及送入AT89C52单片机计数端口用来控制转换次数的计数信号。数据隔离器的作用是将A/D转换部分的数据线与主机部分的数据线隔离,使两部分可同时独立工作,不会产生干扰,且在需要时可将A/D转换器的转换结果(在存储器中)读入主机进行处理。地址产生器由二进制计数器构成,数据存储器的地址线与计数器的输出端相接,计数输入信号有清零信号和计数信号。其中,清零信号受主机控制,每次对1帧CCD信号转换前,必须将地址产生器清零,使2048个像元信号的转换结果从零地址开始依次存放;同样,在读存储单元时,也要先地址产生器清零。计数信号由逻辑控制单元提供,在A/D转换和读存储器期间,每对存储器操作1次就使地址加1,连续操作就可以顺序读写存储器。地址分配器是主机用来给每个读写端口分配地址的。由于本系统的独持设计,每个数据存储器只占用1个地址。只要反复对某一地址操作,就可将存储器中的数据读出。

最后,由系统总控制单元采用适当的计算对其进行处理得到被测物图像的信息。系统总控制单元除完成数据处理工作以外,还担负着数据存储、CCD积分时间控制、PC远程数据传输和控制等工作。

下面给出利用信号采集系统得到的实测光谱。图11是用CCD实测的闪光灯泵浦可调谐掺钛宝石激光器的输出光谱。通过在激光腔内加一铌酸铌晶体光电开关,改变铌酸晶体上的电压,使不同波长的光在激光腔内发生振荡,从而实现钛宝石调谐。这是一种新型的实现钛定石调谐的实验方法,图11所示光谱线就是改变铌酸铌晶体电压,用CCD实测的钛宝石激光器的输出光谱线。每改变一次电压就能很快地、准确地得知输出光的波长和带宽。


Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top