微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > MCU和DSP > 基于单片机C8051F020的自动测控LED节能照明系统

基于单片机C8051F020的自动测控LED节能照明系统

时间:03-19 来源:电子设计工程 点击:

在全球能源危机凸现的当今社会,LED照明以其绿色环保,高效节能的优势成为当前最具潜力的照明方式之一。LED号称"绿色照明的第四代光源",目前已开始逐步应用于电信、交通、农业、医学、军事等领域。LED(Light-emitting Diode,发光二极管)是一种固态的半导体组件,能够把电能直接转化为光能。作为一种固体照明光源,LED具有长寿命、高光效、多光色等特性,可在安全低电压下工作,也可连续开关闪断,能实现0%~100%调光。

本文阐述一种基于单片机C8051F020自动测控LED节能照明系统的设计方案。该系统能够对LED灯的发光强度进行调控,当环境光强减弱时自动提高LED的发光强度,当环境光强变强时自动减弱LED灯的发光强度,维持环境光强值的稳定并达到节能的效果。同时,系统还具有光强、温度、红外3种感应开关控制LED灯的开与关,再加上过压、过流保护措施,进一步提高节能效率并保证照明系统的正常工作。此外,系统还使用液晶实现LED照明工作信息的外部显示。该系统可应用于如楼道照明、工作照明、设备照明等很多场合。

1 总体设计方案

本系统采用单片机C8051F020为核心来实现LED照明灯的自动测控,系统的整体框架如图1所示。

整个系统的设计分硬件设计和软件设计,硬件设计又可分为供电驱动模块、自动测控与显示模块3部分。
供电驱动模块实现的过程为:12~24 V的直流供电输入,经过过压保护电路后向SN3350芯片构成的LED驱动电路提供安全电压,驱动电路驱动LED照明灯正常工作。自动测控与显示模块主要包括光强传感器、温度传感器、红外无线传感器和液晶显示器。光强传感器采用了硅光电池和集成运放组成光电转换电路,将环境中光照强度转换为电压信号,经过单片机的A/D转换,依据实测电压和光照的关系曲线,将相应电压值转化为照度并经由LCD1602液晶显示;温度传感器采用了DS18B20芯片电路,将实时的环境温度转换为电信号传递给单片机分析处理,同样经LCD1602液晶显示;红外无线传感器采用以BISS0001为核心的热释电红外无线感应器电路,感应电路接收到信号后传给单片机控制LED照明灯的开关。

系统实现节能和自动测控的功能由单片机C8051F020实现。软件编程的思路是:由单片机内部产生PWM信号控制SN3350驱动芯片的ADJ引脚。通过改变PWM的占空比,实现对ADJ输入任意电压,进而控制LED照明灯的开关及亮度调节。

2 硬件电路设计

2.1 单片机C8051F020

本系统采用单片机C8051F020,其片内含CIP-51的CPU内核,指令系统与MCS-51完全兼容。含有64 kB片内Flash程序存储器,4 352 B的RAM、8个I/O端口共64根I/O口线、1个12位A/D转换器1个8位A/D转换器以及1个双12位D/A转换器、2个比较器、5个16位通用定时器、5个捕捉/比较模块的可编程计数/定时器阵列、看门狗定时器、VDD监视器和温度传感器等部分。C8051F020单片机支持双时钟,其工作电压范围为2.7~3.6 V(端口I/O、RST和JTAG引脚的耐压为5 V)。

2.2 LED驱动电路

本系统选用了SN3350芯片作为LED驱动电路的核心。SN3350是一款降压型电感电流连续模式驱动芯片,适用于电源电压高于一颗或一串LED所需电压的应用场合。芯片的输入电压范围为6~40 V,输出电流可达750 mA,输出功率可达30W。图2为本系统采用的LED驱动电路。

图2中,3号引脚ADJ为多功能开关/亮度控制脚,其引脚特性为:
1)引脚悬空:工作在普通模式。(普通模式下VADJ=VREF=1.2 V,工作电流IOUTnom=0.1/R1);
2)输入电压低于0.2 V:关闭输出电流;
3)输入直流电压从0.3~1.2 V:输出电流调整范围从25~100%;
4)通过不同占空比的PWM信号来控制输出电流;
5)当ADJ引脚电压超过1.2 V:电流被自动钳位在100%。
SN3350的输出电流可以通过在ADJ引脚加控制信号来设置。本系统利用单片机产生PWM信号输入ADJ引脚,驱动电路依据以上引脚特性在不同的电压值下进入不同的工作模式。

2.3 光强传感器

本系统的光强传感器采用了一种光电转换电路,其原理图如图3所示。电路的作用在于,通过集成运放LM324和反馈电阻Rf,将硅光电池(相当于一个光控恒流源)输出的电流转换为电压信号输出。通过调节Rf阻值的大小,可以改变输出电压值的大小,从而能够适应后级控制电路对输入信号电压值的要求。实际应用时,光照强度影响,Is大小,进而引起Vout的改变,从而实现了将光强信号转换为电压信号。

表1和图4是在实际制成的光电转换电路中,使用照度计和电压表测得的光照度-电压关系。



由图4可见,随着环境光照度的增大,光电转换电路的输出电压也线性增大,相关度达99.1%,线性良好。这表明按照图3制成的光电转换电路的实际测试结果与理论预期符合度较好。同时,图4的光照度-电压关系直线也为软件部分的程序设计提供了重要依据。

2.4 红外无线感应器

本系统的红外无线传感器采用以BISS0001为核心的热释电红外无线感应器电路。BISS0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成的数模混合专用集成电路。以BISS0001为核心的热释电红外无线感应器采用被动探测方式,其电路原理如图5所示。菲涅尔透镜(DSG)接收进入探测区域的人体所发射的波长为8~12 μm的红外线,通过热释电传感器(PIR)将光信号转变为电信号,经电路系统放大,滤波,最后将信号输出。


2.5 其他电路模块

本系统中还有2个较简单的电路模块:过压保护电路和温度传感器电路。

过压保护的意义在于.当开关电源内部稳压环路出现故障或者由于用户操作不当引起输出过压现象时,过压保护电路能进行保护,以防止损坏后级用电设备。此外,还可在系统供电电路中串接自恢复保险丝,起到过流保护的作用。

本系统的温度传感器采用Dallas半导体公司的数字化温度传感器DS18B20。这是世界上第一片支持"一线总线"接口的温度传感器。选用DS18B20为温度传感器的电路十分简洁,9位温度信号经一条总线,直接传递给单片机进行处理。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top