微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > MCU和DSP > 电子工程师在设计中面临的难题及解决方案

电子工程师在设计中面临的难题及解决方案

时间:01-23 来源: 点击:

EMI / 抗干扰设计

EMI 是当今许多设计人员所面临的一项重大挑战。如果不能顺利通过 EMI 测试,则将导致项目成本显著增加和进度迟缓,因此高水平的工程师会在设计的早期寻求减低 EMI 的方法。因为开关稳压器具有高能量效率,所以越来越多人采用,对EMI 的影响也在加重。一种能有助于抑制与开关电源相关之 EMI 的简单方式是采用一个多相扩频时钟。使用诸如 LTC6909 等器件至少能够以三种方式提供帮助。首先,硅振荡器 (例如:LTC6909) 可用于将稳压器的开关频率和最终的基本 EMI 频率设定在某个敏感的频段之外。其次,LTC6909 的多个输出相位可用于在不同的相位对不同的稳压器进行开关操作,因而降低了会产生 EMI 的峰值开关电流。诸如 LTC6909 等产品所提供的第三种改善是运用扩频调频技术 (SSFM) 将开关电流散布于时域之中。此项技术不允许辐射能量在任何接收器的频段内长时间地停留,从而改善了 EMI。

低噪声电路设计

噪声是高准确度系统的大敌。同时,它也是一个涉及范围很大的话题。这里我并不打算详细地阐述这一话题,而是就电子电路中的噪声举三个例子,并说明新产品是如何能够有助于尽量抑制这些噪声。如需全面了解电压噪声、电流噪声、电阻器噪声及其在放大器电路中的关系,请登录凌力尔特公司的网站查阅设计要点 355 (Design Note 355)。

1. 高速数据转换电路中的放大器噪声

在模数转换电路中,假如选择了一个具有足够高分辨率的 ADC,则量化噪声将不再是主导因素。设计人员因而可把其注意力转移至其他的噪声源,包括放大器噪声、电压基准噪声和时钟相位噪声等,所有这些噪声源均会限制总体系统准确度。当选择放大器时,频率范围是重要因素。在 1/f 噪声转折频率以上,宽带电压噪声以 nV/√Hz 为度量单位。带宽越宽,则噪声越大,因此利用无源或低噪声有源滤波器对信号实施滤波处理是低噪声设计的一个重要组成部分。实际上说来,放大器的噪声设定了最小可分辨信号,而失真则决定了可以准确测量的最大信号幅度。噪声与失真一起确定了动态范围。所以,对于高分辨率 ADC 应用而言,选择一款低噪声和低失真的 ADC 驱动器至关紧要。LTC6409 就是这样的一个产品实例,该器件具有 1.1nV/√Hz 的宽带电压噪声。再加上在 100MHz 的 88dB 无寄生动态范围SFDR,可提供适合高速 14 位 ADC 的宽动态范围驱动能力。例如:当以一个 150Msps 的采样速率向 14 位 LTC2262-14 提供一个 DC 耦合单端 70MHz 驱动输入时,所产生的 SNR 和 SFDR 分别为 71.1dB 和 81.6dB。

2. 电压基准噪声

在仪表系统中,分辨率和准确度方面的限制因素常常是电压基准稳定性和噪声。近来,有两个因素使电压基准噪声变得更加重要了。第一个因素是系统电源电压呈日渐降低之势。在较低的工作电压条件下,噪声层变得更为明显。第二个因素是,随着具有高初始准确度和低漂移特性的新型基准面市、以及系统设计人员能够更加容易地对系统因素进行校准,基准稳定性问题已经变得不那么棘手了。然而,噪声是无法予以校准的。为了帮助设计人员满足那些采用较低电源电压系统的苛刻要求,凌力尔特公司推出了具无与伦比的 0.25ppm 峰至峰噪声水平的 LT6655。LT6655 可提供 7 种输出电压选项 (从 1.25V 至 5V),是仪表及测试设备所需的高分辨率 ADC 和 DAC 的理想同伴芯片。该器件的宽工作温度范围和卓越的稳定性使其成为汽车及其他严酷环境中的绝佳选择。

3. 电机控制电流测量中的共模噪声

用于闭环 PWM控制的准确电流测量 (例如:监视 H 桥电机所需的电流测量) 是一项极具挑战性的工作。人们优选的方法通常是采用一个与电机相串联的并联电阻器。当开关断开和闭合时,共模电压会非常突然地从一个电平变至另一个电平,并伴随有由于流过电机的电流发生变化所导致的大反馈电压 (L di/dt),因而使情况更加复杂。应对这种共模噪声的方法之一是对电流测量进行同步处理,以使测量在电路实现稳定之后进行。但在实际操作中这种做法会很难实施。诸如 LT1999 等新产品简化了这一测量难题。LT1999 具有一个 96dB (在 DC) 和 80dB (在 100kHz) 的输入共模抑制比。其阶跃响应为 1μs,而带宽为 2MHz。这款器件专为严苛环境而设计,拥有高 ESD 耐受能力、低 EMI 敏感性和 一个 -55°C 至 150°C 的规定工作温度范围,从而使其非常适合于汽车及工业应用。

放大电路

运算放大器是极为通用的单元式部件,可用于信号的放大和调理。但是,由于我们生活在现实世界之中,因此并不存在诸如"理想运算放大器"之类的东西。设计人员必须了解其设计目标,并选择一款具有期望规格组合 (使其能够满足这些目标) 的放大器。对于很多应用而言,一个重要的发展趋势就是"以更少组件处理更多工作"。在电子系统中,这通常意味着比先前产品更快的速度、更高的准确度和更低的功耗。LTC6252 / 3 / 4、LTC624 / 5 / 6 和 LTC6255 / 6 / 7 系列运算放大器提供了一种新的速度-功率效率水平,并保持了低噪声和高准确度。这些产品运用了一种先进的 SiGe 工艺,以实现以下的优异性能:LTC6252 具有 20MHz GBW 和仅 3.5mA 的消耗电流,LTC6246 拥有 180MHz 带宽且消耗电流仅为 1mA,而 LTC6255 则具备 6.5MHz GBW 和区区 65μA 的消耗电流。这些产品还可提供纤巧型封装,并在 -40°C 至 125°C 的温度范围内拥有绝佳的 AC 和 DC 规格指标,从而使设计人员能够以低功耗来实现优越的性能。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top