图3 锂离子电池保护电路系统框图 图3 中MN 在过电流时导通,它的作用是使过大的电流不经过FET1和FET2而通过MN流向地。MP与待机状态有关,待机状态电路的工作原理是:当保护电路进入过放电状态后,产生一个待机状态信号,使保护芯片中的大多数电路停止工作,它是通过控制逻辑电路和负载短路检测电路的配合完成的。M3的作用是在待机状态下,使采样电路不消耗静态电流。M4和M5分别用于实现过放电和过充电检测迟滞以滤除充放电过程中的波动干扰信号。而瞬时干扰信号的滤除由控制逻辑电路中的延时电路实现。
关键电路实现
锂离子电池保护芯片的性能,不仅与系统结构密切相关,与具体电路的实现也是密不可分的,下面的电路模块在整个芯片中具有关键的作用,本文从功耗和精度等角度考虑,提出了独特的设计方法。
待机状态电路 保护电路进入待机状态有赖于过放电状态的检测,进入待机状态后,为了减小功耗应使尽可能多的电路模块停止工作,但如果所有的检测电路都不工作,待机状态将无法退出,为此在设计负载短路检测电路时不引入待机状态控制信号,其目的即为在电池电压升高后使保护电路能及时退出待机状态。图4 给出了待机状态信号产生和撤销的原理图。
图4 中SOD为过放电检测信号,系统处于正常状态时,SOD为高电平,VM为低电平,因此待机状态控制信号POWERD输出高电平、POWERDB输出低电平。当系统进入过放电状态时,SOD(延时后的信号)变为低电平,MP导通使VM变为高电平,最终使POWERD变为低电平、POWERDB变为高电平,它们控制保护电路相应模块停止工作,系统进入待机状态。当对电池进行充电时,由图1可知VM被强制拉到低电平,使负载短路检测电路的输出信号OUT_LSB变为高电平;此时,不论SOD为何值或非门都将输出低电平,POWERD由此变为高电平,这样,就可实现待机状态的退出。
基准电压电路 为了检测过充电、过放电和放电过流情况,检测比较器需要与基准电压进行比较。由于过充电检测和过放电检测电路之前有采样电路,它们可用相同的基准电压,而过流1 和过流2 需采用不同的基准电压。为了提高芯片的检测精度,电压基准采用受电源、温度和工艺影响较小的带隙基准源,如图5 所示为具体结构图,其中M1~M5 工作于弱反型区,因此该电路具有功耗较小的特点。
电路的工作原理为:由M1-M4和R5组成的自偏置电路产生具有正温度系数的电流,它在电阻R0所产生的压降和具有负温度系数的PN 结压降(D0上的压降)相加,从而输出零温度系数的基准电压VBD;为满足同一电路中输出不同的基准电压源,利用电阻分压将VBD 分成了VBI1及VBI2输出;C0和R6组成启动电路。
由图5 可知, VGSM2-VGSM1=IM2*R5。M3 和M4 组成电流镜,取相同的宽长比,则IM1=IM2。因为M1和M2工作于弱反型区,所以:
式(1)中n为亚阈值因子,UT为热电势。M3和M5组成电流镜,则: 设)R=(R1+R2)//(R3+R4 ),二极管的正向压降为VD,可以推导输出电压为: 由(3)-(5)式可知,基准电压的精度与电阻R0-R4 的精度直接相关,为此这些电阻需要采用调整(trimming)技术。
图4 待机状态实现电路 图5 电压基准电路 充电过流检测电路
充电过流的检测归结为检测VM电压,其临界值为VCH(约为-1.3V)。如果所用工艺的MOS管阈值电压可以调节,负电压检测电路可用差分结构的比较器实现,其中比较器的一个输入端接地,并且两个差分对管的阈值电压需要调整。为了使该电路能用常规的CMOS 工艺实现,本文在过零比较器的基础上引入升压电路,如图6(a)所示当VM》VCHA时,升压电路使VN>0 。升压部分具体实现如图6(b)所示。
PMOS管M1和NMOS管M2的栅极都接地。当M1的栅源电压小于它的阈值电压时,M2截止,而M1始终导通,A1比较器的反相输入信号VN电位因为大于同相输入端的电位,而使输出OUT_CDCB为低电平。随着输入信号VM电位向负方向的增大,M2逐渐导通,最后使得VN 端电位变负,OUT_CDCB由此变为高电平。图6中VN=0时的输入电压即为检测电压VCHA,此时M1和M2处于饱和状态且下列关系式成立:
(6)式中, un和up分别为N管和P管的迁移率,VTHN和VTHP分别为N管和P管的阈值电压,COX为氧化层 | | |