C程序设计的常用算法
C程序设计的常用算法
算法(Algorithm):计算机解题的基本思想方法和步骤。算法的描述:是对要解决一个问题或要完成一项任务所采取的方法和步骤的描述,包括需要什么数据(输入什么数据、输出什么结果)、采用什么结构、使用什么语句以及如何安排这些语句等。通常使用自然语言、结构化流程图、伪代码等来描述算法。
一、计数、求和、求阶乘等简单算法
此类问题都要使用循环,要注意根据问题确定循环变量的初值、终值或结束条件,更要注意用来表示计数、和、阶乘的变量的初值。
例:用随机函数产生100个[0,99]范围内的随机整数,统计个位上的数字分别为1,2,3,4,5,6,7,8,9,0的数的个数并打印出来。
本题使用数组来处理,用数组a[100]存放产生的确100个随机整数,数组x[10]来存放个位上的数字分别为1,2,3,4,5,6,7,8,9,0的数的个数。即个位是1的个数存放在x[1]中,个位是2的个数存放在x[2]中,……个位是0的个数存放在x[10]。
void main()
{ int a[101],x[11],i,p;
for(i=0;i<=11;i++)
x=0;
for(i=1;i<=100;i++)
{ a=rand() % 100;
printf("%4d",a);
if(i%10==0)printf("n");
}
for(i=1;i<=100;i++)
{ p=a%10;
if(p==0) p=10;
x[p]=x[p]+1;
}
for(i=1;i<=10;i++)
{ p=i;
if(i==10) p=0;
printf("%d,%dn",p,x);
}
printf("n");
}
二、求两个整数的最大公约数、最小公倍数
分析:求最大公约数的算法思想:(最小公倍数=两个整数之积/最大公约数)
(1) 对于已知两数m,n,使得m>n;
(2) m除以n得余数r;
(3) 若r=0,则n为求得的最大公约数,算法结束;否则执行(4);
(4) m←n,n←r,再重复执行(2)。
例如: 求 m=14 ,n=6 的最大公约数. m n r
14 6 2
6 2 0
void main()
{ int nm,r,n,m,t;
printf("please input two numbers:n");
scanf("%d,%d",&m,&n);
nm=n*m;
if (m<n)
{ t=n; n=m; m=t; }
r=m%n;
while (r!=0)
{ m=n; n=r; r=m%n; }
printf("最大公约数:%dn",n);
printf("最小公倍数:%dn",nm/n);
}
三、判断素数
只能被1或本身整除的数称为素数 基本思想:把m作为被除数,将2-INT( )作为除数,如果都除不尽,m就是素数,否则就不是。(可用以下程序段实现)
void main()
{ int m,i,k;
printf("please input a number:n");
scanf("%d",&m);
k=sqrt(m);
for(i=2;i<k;i++)
if(m%i==0) break;
if(i>=k)
printf("该数是素数");
else
printf("该数不是素数");
}
将其写成一函数,若为素数返回1,不是则返回0
int prime( m%)
{int i,k;
k=sqrt(m);
for(i=2;i<k;i++)
if(m%i==0) return 0;
return 1;
}
四、验证哥德巴赫猜想
(任意一个大于等于6的偶数都可以分解为两个素数之和)
基本思想:n为大于等于6的任一偶数,可分解为n1和n2两个数,分别检查n1和n2是否为素数,如都是,则为一组解。如n1不是素数,就不必再检查n2是否素数。先从n1=3开始,检验n1和n2(n2=N-n1)是否素数。然后使n1+2 再检验n1、n2是否素数,… 直到n1=n/2为止。
利用上面的prime函数,验证哥德巴赫猜想的程序代码如下:
#include "math.h"
int prime(int m)
{ int i,k;
k=sqrt(m);
for(i=2;i<k;i++)
if(m%i==0) break;
if(i>=k)
return 1;
else
return 0;
}
main()
{ int x,i;
printf("please input a even number(>=6):n");
scanf("%d",&x);
if (x<6||x%2!=0)
printf("data error!n");
else
for(i=2;i<=x/2;i++)
if (prime(i)&&prime(x-i))
{
printf("%d+%dn",i,x-i);
printf("验证成功!");
break;
}
}
五、排序问题
1.选择法排序(升序)
基本思想:
1)对有n个数的序列(存放在数组a(n)中),从中选出最小的数,与第1个数交换位置;
2)除第1 个数外,其余n-1个数中选最小的数,与第2个数交换位置;
3)依次类推,选择了n-1次后,这个数列已按升序排列。
程序代码如下:
void main()
{ int i,j,imin,s,a[10];
printf("n input 10 numbers:n");
for(i=0;i<10;i++)
scanf("%d",&a);
for(i=0;i<9;i++)
{ imin=i;
for(j=i+1;j<10;j++)
if(a[imin]>a[j]) imin=j;
if(i!=imin)
{s=a; a=a[imin]; a[imin]=s; }
printf("%dn",a);
}
}
2.冒泡法排序(升序)
基本思想:(将相邻两个数比较,小的调到前头)
1)有n个数(存放在数组a(n)中),第一趟将每相邻两个数比较,小的调到前头,经n-1次两两相邻比较后,最大的数已"沉底",放在最后一个位置,小数上升"浮起";
2)第二趟对余下的n-1个数(最大的数已"沉底")按上法比较,经n-2次两两相邻比较后得次大的数;
3)依次类推,n个数共进行n-1趟比较,在第j趟中要进行n-j次两两比较。
程序段如下
void main()
{ int a[10];
int i,j,t;
printf("input 10 numbersn");
for(i=0;i<10;i++)
scanf("%d",&a);
printf("n");
for(j=0;j<=8;j++)
for(i=0;i<9-j;i++)
if(a>a[i+1])
{t=a;a=a[i+1];a[i+1]=t;}
printf("the sorted numbers:n");
for(i=0;i<10;i++)
printf("%dn",a);
}
3.合并法排序(将两个有序数组A、B合并成另一个有序的数组C,升序)
基本思想:
1)先在A、B数组中各取第一个元素进行比较,将小的元素放入C数组;
2)取小的元素所在数组的下一个元素与另一数组中上次比较后较大的元素比较,重复上述比较过程,直到某个数组被先排完;
3)将另一个数组剩余元素抄入C数组,合并排序完成。
程序段如下:
void main()
{ int a[10],b[10],c[20],i,ia,ib,ic;
printf("please input the first array:n");
for(i=0;i<10;i++)
scanf("%d",&a);
for(i=0;i<10;i++)
scanf("%d",&b);
printf("n");
ia=0;ib=0;ic=0;
while(ia<10&&ib<10)
{ if(a[ia]<b[ib])
{ c[ic]=a[ia];ia++;}
else
{ c[ic]=b[ib];ib++;}
ic++;
}
while(ia<=9)
{ c[ic]=a[ia];
ia++;ic++;
}
while(ib<=9)
{ c[ic]=b[ib];
b++;ic++;
}
for(i=0;i<20;i++)
printf("%dn",c);
}
- 车载MP3中Flash文件系统的设计与应用(11-11)
- 嵌入式系统的定义与发展历史(11-15)
- 小尺寸单片机在便携式设备中的应用(11-19)
- F1aSh存储器在TMS320C3X系统中的应用(11-11)
- 便携式多媒体播放器设计在硬软件方面的注意事项(11-19)
- 51单片机 Keil C 延时程序的简单研究!(11-15)