使用手持式矢量网络分析仪测量雷达散射截面
时间:06-02
来源:mwrf
点击:
图8,目标区域(没有放置被测目标和校准)所有反射的时域显示
图9,在目标区域放置RCS为0.018平方米的校准球体的时域显示
测量步骤和测量运算
将对目标的雷达散射截面测量所使用的矢量网络分析仪设定为S21的测量。
图10,使用矢量网络分析仪对雷达散射截面测量设定
2.将被测目标从支架上移开,并测量支架的反射频率扫描S21(str)测量,如果目标不便移开,可以将天线同时(包括发射天线和接收天线)转到一个空旷位置,并保证在相同的距离上没有其他物体存在。如图10 中表示的校准区域。
3.将频率扫描S21(str)结果转换为时域,同时将时域门设置在目标位置,并调节门宽将目标的所有反射均包含在内,将时域滤波后的结果保存至仪表内存。
4.如果目标无法从支架上移开,应保证支架本身的反射S21(str)较反射目标低20dB以上(S21(str)+20dB<< S21(tgt))。为达到此目的,可以采用在支架上包覆微波吸收材料的方法。
5.将标准物体置于目标区域,测量标准物体频率扫描的S21(std),并将结果转换为时域,同时将时域门设置在目标位置,并调节门宽将目标的所有反射均包含在内,将时域滤波后的结果保存至仪表内存。注意,标准物体的雷达散射截面应接近目标雷达散射截面。
6.将被测目标置于目标区域并移开标准物体,测量标准物体频率扫描S21(tgt),并将结果转换为时域,同时将时域门设置在目标位置,并调节门宽将目标的所有反射均包含在内,将时域滤波后的结果保存至仪表内存。
7.雷达散射截面运算方程:
这样,, ,
由于 ,所以
因此, ,如果支架的反射较大,并且标准物体也是放在支架上进行校准测量的。那么,
由于 已知,我们即可以得到 ,例如,
图11 中的目标与图9中直径为6英寸的校准金属球体相比较(参考光标读数),知道 , ,,根据
,得到
图11,测量一个直径为12英寸的金属球体的S21时域曲线
信号极化
反射信号的极化方向可能与雷达发射信号的极化方向不同,目标的形状不同反射的极化也会不同,见图2 中的Et 和Er描述。
为了修正极化误差,我们可以分别测量目标在垂直和水平极化情况下的雷达散射截面,这样我们就可以建立散射截面极化矩阵。所要做的是,在一种发射极化(垂直或水平)情况下,测量两种极化(垂直和水平)的S参数。
发射 水平极化 垂直极化 | 接收 水平极化/垂直极化 水平极化/垂直极化 |
Et 与Er的关系为
这里Sxx为上面提到的4 种不同状态测得的S参数
发射垂直极化,接收垂直极化
发射垂直极化,接收水平极化
发射水平极化,接收垂直极化
发射垂直极化,接收垂直极化
根据上面的描述,对于4 种状态下得到的S参数,我们也可以推出类似的雷达散射截面矩阵
如果发射天线是垂直极化的,那么 ,并以此类推。
矢量网络分析仪 相关文章:
- 矢量网络分析仪的应用(03-29)
- 基于矢量网络分析仪与传统采样示波器TDR 之间的测量性能和优势比较(09-13)
- 基于PNA矢量网络分析仪的脉冲信号的S参数测量解决方案(07-09)
- 利用更先进矢量网络分析仪应对射频测量挑战(12-06)
- 矢量网络分析仪Wiltron360B在射频仿真中的应用(12-12)
- 矢量网络分析仪提供解决方案(12-08)