移动设备的FM测试方案
间最短并且测试成本最低。根据上文的介绍,我们完全可以用信号发生器和频谱分析仪进行测试。而且,在时间允许的研发环境中,使用分立仪器就足够了。
然而,制造环境下时间和成本都非常关键,因而需要使用流水线程度更高的方法。例如,包含信号发生和调整设备控制的测试系统必然能简化处理复杂度并缩短处理时间(见图6)。
图6 图中的测试方案使用计算机分析和调整设备控制,利用测试仪提供FM、CW和FM/AM输出信号并用接口设备将模拟音频信号转换为数字信号以供计算机分析软件使用
使用I2S信号的系统与使用模拟音频输出的系统很相似,区别在于前者的接口模块能接收和生成I2S信号(见图7)。
图7 接口模块能接收和生成I2S数字数据,无需将模拟转换为数字而且消除了可能出现在模拟输出信号中的模拟损伤的影响
如果测试仪能生成并混合多个信号,还能用各种音频信号对RF信号进行频率调制,它就能组合一些设计和制造测试并得到多个测试结果。通过利用数字化的测试数据和使用高效的分析软件,我们可以在几秒钟之内评估测试并能消除设置或“读”数据中的人为误差。
Multicom测试系统实现FM测试
图8 LitePoint公司FM测试解决方案
下面以LitePoint公司IQ2010型Multicom为例说明如何实现FM测试(图8)。测试仪已内建了能覆盖FM测试频谱的矢量信号分析(VSA)和矢量信号发生(VSG)。当测试接收灵敏度时,IQ2010可产生具有以下特点的FM信号:1kHz音频信号、94.3MHz载频、22.5kHz最大频偏、50us预加重、30Hz~15kHz频段调制(例如单声道模式)。
VSG FM信号输入FM RX DUT,并且模拟音频输出送到音频接口模块。从该音频信号生成一个.wav文件并通过USB接口传至笔记本电脑。这里,LitePoint公司的音频分析软件能快速分析此.wav文件的信息并得到分析结果。音频接口模块还能接收来自DUT的I2S输出。同样,生成的.wav文件通过USB接口可以传到笔记本电脑。