精准延时函数配置+串口配置
大家好,前段时间出了个试用报告是讲解关于F412的时钟函数的配置,不知道大家可否看懂,因为本人是个“原子迷”,所以在学习F103的时候就喜欢用正点原子的那套模板写程序,然而现在接触F412的学习的时候,官方提供的教程都是基于STM32CubeMX生成的模板,总感觉看的很不舒服,所以就想尽办法将正点原子的delay.c & sys.c & usart.c 三个C文件移植过来,其实并没有什么难度,只要把我的上一篇
【NUCLEO-F412ZG试用体验】小项目之大心得(STM32CubeMX+时钟配置+基于HAL库的DHT11驱动)
里边的时钟函数的配置看懂了,基本没啥问题了,因为时钟函数的配置决定系统的运行速度,至于其他有多高大上的配置什么的暂且不管,只要方便我们开发就行。
我是参考正点原子的F429的HAL库开发的例程移植出来的,大家可以到正点原子出的教程里找找。
暂且不废话了,来看看程序吧!
delay.c
#include"delay.h"
#include"sys.h"
//////////////////////////////////////////////////////////////////////////////////
//如果使用ucos,则包括下面的头文件即可.
#ifSYSTEM_SUPPORT_OS
#include"includes.h" //ucos使用
#endif
static u32fac_us=0; //us延时倍乘数
#ifSYSTEM_SUPPORT_OS
static u16 fac_ms=0; //ms延时倍乘数,在os下,代表每个节拍的ms数
#endif
#ifSYSTEM_SUPPORT_OS //如果SYSTEM_SUPPORT_OS定义了,说明要支持OS了(不限于UCOS).
//当delay_us/delay_ms需要支持OS的时候需要三个与OS相关的宏定义和函数来支持
//首先是3个宏定义:
//delay_osrunning:用于表示OS当前是否正在运行,以决定是否可以使用相关函数
//delay_ostickspersec:用于表示OS设定的时钟节拍,delay_init将根据这个参数来初始哈systick
//delay_osintnesting:用于表示OS中断嵌套级别,因为中断里面不可以调度,delay_ms使用该参数来决定如何运行
//然后是3个函数:
//delay_osschedlock:用于锁定OS任务调度,禁止调度
//delay_osschedunlock:用于解锁OS任务调度,重新开启调度
//delay_ostimedly:用于OS延时,可以引起任务调度.
//本例程仅作UCOSII和UCOSIII的支持,其他OS,请自行参考着移植
//支持UCOSII
#ifdef OS_CRITICAL_METHOD //OS_CRITICAL_METHOD定义了,说明要支持UCOSII
#definedelay_osrunning OSRunning //OS是否运行标记,0,不运行;1,在运行
#definedelay_ostickspersec OS_TICKS_PER_SEC //OS时钟节拍,即每秒调度次数
#definedelay_osintnesting OSIntNesting //中断嵌套级别,即中断嵌套次数
#endif
//支持UCOSIII
#ifdef CPU_CFG_CRITICAL_METHOD //CPU_CFG_CRITICAL_METHOD定义了,说明要支持UCOSIII
#definedelay_osrunning OSRunning //OS是否运行标记,0,不运行;1,在运行
#definedelay_ostickspersec OSCfg_TickRate_Hz //OS时钟节拍,即每秒调度次数
#definedelay_osintnesting OSIntNestingCtr //中断嵌套级别,即中断嵌套次数
#endif
//us级延时时,关闭任务调度(防止打断us级延迟)
voiddelay_osschedlock(void)
{
#ifdefCPU_CFG_CRITICAL_METHOD //使用UCOSIII
OS_ERR err;
OSSchedLock(&err); //UCOSIII的方式,禁止调度,防止打断us延时
#else //否则UCOSII
OSSchedLock(); //UCOSII的方式,禁止调度,防止打断us延时
#endif
}
//us级延时时,恢复任务调度
voiddelay_osschedunlock(void)
{
#ifdefCPU_CFG_CRITICAL_METHOD //使用UCOSIII
OS_ERR err;
OSSchedUnlock(&err); //UCOSIII的方式,恢复调度
#else //否则UCOSII
OSSchedUnlock(); //UCOSII的方式,恢复调度
#endif
}
//调用OS自带的延时函数延时
//ticks:延时的节拍数
voiddelay_ostimedly(u32 ticks)
{
#ifdefCPU_CFG_CRITICAL_METHOD
OS_ERR err;
OSTimeDly(ticks,OS_OPT_TIME_PERIODIC,&err);//UCOSIII延时采用周期模式
#else
OSTimeDly(ticks); //UCOSII延时
#endif
}
//systick中断服务函数,使用OS时用到
voidSysTick_Handler(void)
{
HAL_IncTick();
if(delay_osrunning==1) //OS开始跑了,才执行正常的调度处理
{
OSIntEnter(); //进入中断
OSTimeTick(); //调用ucos的时钟服务程序
OSIntExit(); //触发任务切换软中断
}
}
#endif
//初始化延迟函数
//当使用ucos的时候,此函数会初始化ucos的时钟节拍
//SYSTICK的时钟固定为AHB时钟
//SYSCLK:系统时钟频率
void delay_init(u8SYSCLK)
{
#ifSYSTEM_SUPPORT_OS //如果需要支持OS.
u32 reload;
#endif
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);//SysTick频率为HCLK
fac_us=SYSCLK; //不论是否使用OS,fac_us都需要使用
#ifSYSTEM_SUPPORT_OS //如果需要支持OS.
reload=SYSCLK; //每秒钟的计数次数 单位为K
reload*=1000000/delay_ostickspersec; //根据delay_ostickspersec设定溢出时间
//reload为24位寄存器,最大值:16777216,在180M下,约合0.745s左右
fac_ms=1000/delay_ostickspersec; //代表OS可以延时的最少单位
SysTick->CTRL|=SysTick_CTRL_TICKINT_Msk;//开启SYSTICK中断
SysTick->LOAD=reload; //每1/OS_TICKS_PER_SEC秒中断一次
SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk;//开启SYSTICK
#else
#endif
}
#ifSYSTEM_SUPPORT_OS //如果需要支持OS.
//延时nus
//nus:要延时的us数.
//nus:0~190887435(最大值即2^32/fac_us@fac_us=22.5)
void delay_us(u32nus)
{
u32 ticks;
u32 told,tnow,tcnt=0;
u32 reload=SysTick->LOAD; //LOAD的值
ticks=nus*fac_us; //需要的节拍数
delay_osschedlock(); //阻止OS调度,防止打断us延时
told=SysTick->VAL; //刚进入时的计数器值
while(1)
{
tnow=SysTick->VAL;
if(tnow!=told)
{
if(tnow<told)tcnt+=told-tnow; //这里注意一下SYSTICK是一个递减的计数器就可以了.
elsetcnt+=reload-tnow+told;
told=tnow;
if(tcnt>=ticks)break; //时间超过/等于要延迟的时间,则退出.
}
};
delay_osschedunlock(); //恢复OS调度
}
//延时nms
//nms:要延时的ms数
//nms:0~65535
void delay_ms(u16nms)
{
if(delay_osrunning&&delay_osintnesting==0)//如果OS已经在跑了,并且不是在中断里面(中断里面不能任务调度)
{
if(nms>=fac_ms) //延时的时间大于OS的最少时间周期
{
delay_ostimedly(nms/fac_ms); //OS延时
}
nms%=fac_ms; //OS已经无法提供这么小的延时了,采用普通方式延时
}
delay_us((u32)(nms*1000)); //普通方式延时
}
#else //不用ucos时
//延时nus
//nus为要延时的us数.
//nus:0~190887435(最大值即2^32/fac_us@fac_us=22.5)
void delay_us(u32nus)
{
u32 ticks;
u32 told,tnow,tcnt=0;
u32 reload=SysTick->LOAD; //LOAD的值
ticks=nus*fac_us; //需要的节拍数
told=SysTick->VAL; //刚进入时的计数器值
while(1)
{
tnow=SysTick->VAL;
if(tnow!=told)
{
if(tnow<told)tcnt+=told-tnow; //这里注意一下SYSTICK是一个递减的计数器就可以了.
elsetcnt+=reload-tnow+told;
told=tnow;
if(tcnt>=ticks)break; //时间超过/等于要延迟的时间,则退出.
}
};
}
//延时nms
//nms:要延时的ms数
void delay_ms(u16nms)
{
u32 i;
for(i=0;i<nms;i++) delay_us(1000);
}
#endif
usart.c
#include"usart.h"
#include"delay.h"
//////////////////////////////////////////////////////////////////////////////////
//如果使用os,则包括下面的头文件即可.
#ifSYSTEM_SUPPORT_OS
#include"includes.h" //os使用
#endif
//加入以下代码,支持printf函数,而不需要选择use MicroLIB
//#definePUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#if 1
#pragmaimport(__use_no_semihosting)
//标准库需要的支持函数
struct __FILE
{
int handle;
};
FILE__stdout;
//定义_sys_exit()以避免使用半主机模式
void _sys_exit(intx)
{
x = x;
}
//重定义fputc函数
int fputc(int ch,FILE *f)
{
while((USART1->SR&0X40)==0);//循环发送,直到发送完毕
USART1->DR = (u8) ch;
return ch;
}
#endif
#ifEN_USART1_RX //如果使能了接收
//串口1中断服务程序
//注意,读取USARTx->SR能避免莫名其妙的错误
u8USART_RX_BUF[USART_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节.
//接收状态
//bit15, 接收完成标志
//bit14, 接收到0x0d
//bit13~0, 接收到的有效字节数目
u16USART_RX_STA=0; //接收状态标记
u8aRxBuffer[RXBUFFERSIZE];//HAL库使用的串口接收缓冲
UART_HandleTypeDefUART1_Handler; //UART句柄
//初始化IO 串口1
//bound:波特率
void uart_init(u32bound)
{
//UART 初始化设置
UART1_Handler.Instance=USART1; //USART1
UART1_Handler.Init.BaudRate=bound; //波特率
UART1_Handler.Init.WordLength=UART_WORDLENGTH_8B; //字长为8位数据格式
UART1_Handler.Init.StopBits=UART_STOPBITS_1; //一个停止位
UART1_Handler.Init.Parity=UART_PARITY_NONE; //无奇偶校验位
UART1_Handler.Init.HwFlowCtl=UART_HWCONTROL_NONE; //无硬件流控
UART1_Handler.Init.Mode=UART_MODE_TX_RX; //收发模式
HAL_UART_Init(&UART1_Handler); //HAL_UART_Init()会使能UART1
HAL_UART_Receive_IT(&UART1_Handler,(u8 *)aRxBuffer, RXBUFFERSIZE);//该函数会开启接收中断:标志位UART_IT_RXNE,并且设置接收缓冲以及接收缓冲接收最大数据量
}
//UART底层初始化,时钟使能,引脚配置,中断配置
//此函数会被HAL_UART_Init()调用
//huart:串口句柄
voidHAL_UART_MspInit(UART_HandleTypeDef *huart)
{
//GPIO端口设置
GPIO_InitTypeDef GPIO_Initure;
if(huart->Instance==USART1)//如果是串口1,进行串口1 MSP初始化
{
__HAL_RCC_GPIOA_CLK_ENABLE(); //使能GPIOA时钟
__HAL_RCC_USART1_CLK_ENABLE(); //使能USART1时钟
GPIO_Initure.Pin=GPIO_PIN_9; //PA9 TX
GPIO_Initure.Mode=GPIO_MODE_AF_PP; //复用推挽输出
GPIO_Initure.Pull=GPIO_PULLUP; //上拉
GPIO_Initure.Speed=GPIO_SPEED_FAST; //高速
GPIO_Initure.Alternate=GPIO_AF7_USART1; //复用为USART1
HAL_GPIO_Init(GPIOA,&GPIO_Initure); //初始化PA9
GPIO_Initure.Pin=GPIO_PIN_10; //PA10 RX
HAL_GPIO_Init(GPIOA,&GPIO_Initure); //初始化PA10
#if EN_USART1_RX
HAL_NVIC_EnableIRQ(USART1_IRQn); //使能USART1中断通道
HAL_NVIC_SetPriority(USART1_IRQn,3,3); //抢占优先级3,子优先级3
#endif
}
}
void HAL_UART_RxCpltCallback(UART_HandleTypeDef*huart)
{
if(huart->Instance==USART1)//如果是串口1
{
if((USART_RX_STA&0x8000)==0)//接收未完成
{
if(USART_RX_STA&0x4000)//接收到了0x0d
{
if(aRxBuffer[0]!=0x0a)USART_RX_STA=0;//接收错误,重新开始
elseUSART_RX_STA|=0x8000; //接收完成了
}
else //还没收到0X0D
{
if(aRxBuffer[0]==0x0d)USART_RX_STA|=0x4000;
else
{
USART_RX_BUF[USART_RX_STA&0X3FFF]=aRxBuffer[0];
USART_RX_STA++;
if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//接收数据错误,重新开始接收
}
}
}
}
}
//串口1中断服务程序
voidUSART1_IRQHandler(void)
{
u32 timeout=0;
#ifSYSTEM_SUPPORT_OS //使用OS
OSIntEnter();
#endif
HAL_UART_IRQHandler(&UART1_Handler); //调用HAL库中断处理公用函数
timeout=0;
while (HAL_UART_GetState(&UART1_Handler)!= HAL_UART_STATE_READY)//等待就绪
{
timeout++;////超时处理
if(timeout>HAL_MAX_DELAY) break;
}
timeout=0;
while(HAL_UART_Receive_IT(&UART1_Handler,(u8 *)aRxBuffer, RXBUFFERSIZE) != HAL_OK)//一次处理完成之后,重新开启中断并设置RxXferCount为1
{
timeout++; //超时处理
if(timeout>HAL_MAX_DELAY) break;
}
#ifSYSTEM_SUPPORT_OS //使用OS
OSIntExit();
#endif
}
#endif
/*下面代码我们直接把中断控制逻辑写在中断服务函数内部。*/
/*
//串口1中断服务程序
voidUSART1_IRQHandler(void)
{
u8 Res;
#if SYSTEM_SUPPORT_OS //使用OS
OSIntEnter();
#endif
if((__HAL_UART_GET_FLAG(&UART1_Handler,UART_FLAG_RXNE)!=RESET)) //接收中断(接收到的数据必须是0x0d 0x0a结尾)
{
HAL_UART_Receive(&UART1_Handler,&Res,1,1000);
if((USART_RX_STA&0x8000)==0)//接收未完成
{
if(USART_RX_STA&0x4000)//接收到了0x0d
{
if(Res!=0x0a)USART_RX_STA=0;//接收错误,重新开始
elseUSART_RX_STA|=0x8000; //接收完成了
}
else //还没收到0X0D
{
if(Res==0x0d)USART_RX_STA|=0x4000;
else
{
USART_RX_BUF[USART_RX_STA&0X3FFF]=Res;
USART_RX_STA++;
if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//接收数据错误,重新开始接收
}
}
}
}
HAL_UART_IRQHandler(&UART1_Handler);
#ifSYSTEM_SUPPORT_OS //使用OS
OSIntExit();
#endif
}
#endif
*/
注释很详细,我就不详细解释了,大家有什么不明白的可以在下边回帖大家一块讨论。下边附上几张我用逻辑分析仪测到的精准延时
没积分不能下载。
没积分不能下载。
最近计划这样做