关于去耦电容和旁路电容
我知道在电源设计中,电源输入与输出都要滤波和去耦合,请问下怎么叫去耦电容?什么叫旁路电容啊?我知道概念,它们两者区别在于:旁路电容是把输入信号中的干扰信号去掉,而去耦电容是把输出信号中的干扰信号去掉;但是我不知道具体怎么区分?
难道左边的是2个电容旁路电容,右边的是2个电容去耦电容吗?
不管去耦电容还是旁路电容抑或滤波电容,基本上都是利用电容对交变信号呈低阻性的特点,只是用在不同地方叫法不同而已。
有一种说法:对于同一个电路来说,旁路电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦电容是把输出信号的干扰作为滤除对象。去耦和旁路都可以看作滤波。
我想觉得输入输出是相对的,因此TPS76901输入端的两个电容相对TPS76901来说是输入,相对前端3.3V电源来说是输出,所以单单说左边2个电容是旁路电容也不太准确。
我的理解是:0.1uF电容是旁路电容,把高频噪声过滤;4.7uF电容是去耦电容,相当于电池,避免由于电流的突变而使电压下降,避免相互间的耦合干扰。
不管是滤波电容、去耦电容还是旁路电容,其实都是滤波的,只是应用在不同的电路中,叫法和用法不一样。滤波电容,通常用在电源整流以后的电容,它是把整流电路交流整流成脉动直流,通过充放电加以平滑的电容,这种电容一般都是电解电容,而且容量较大。旁路电容,是把输入信号中的高频成份加以滤除,主要是用于滤除高频杂波的。去耦电容,是把输出信号的干扰作为滤除对象,去耦电容相当于电池,利用其充放电,使得放大后的信号不会因电流的突变而受干扰。它的容量根据信号的频率、抑制波纹程度而定。
不管是滤波电容、去耦电容还是旁路电容,其实都是滤波的,只是应用在不同的电路中,叫法和用法不一样。滤波电容,通常用在电源整流以后的电容,它是把整流电路交流整流成脉动直流,通过充放电加以平滑的电容,这种电容一般都是电解电容,而且容量较大。旁路电容,是把输入信号中的高频成份加以滤除,主要是用于滤除高频杂波的。去耦电容,是把输出信号的干扰作为滤除对象,去耦电容相当于电池,利用其充放电,使得放大后的信号不会因电流的突变而受干扰。它的容量根据信号的频率、抑制波纹程度而定。
其实都是滤波的,只是应用在不同的电路中,叫法和用法不一样。
旁路电容,是把输入信号中的高频成份加以滤除,主要是用于滤除高频杂波的,通常用瓷质电容、涤纶电容,容量较小,在皮法级。
去耦电容,是把输出信号的干扰作为滤除对象,去耦电容相当于电池,利用其充放电,使得放大后的信号不会因电流的突变而受干扰。它的容量根据信号的频率、抑制波纹程度而定。
去耦电容用于滤波,旁路电容用于隔直通交
电源系统中一般叫做滤波电容。
旁路和去耦是在用电芯片中的说法。
去耦电容相当于是 降低芯片与芯片之间从电源线上的相互干扰。
旁路电容的英文叫bypass,又叫旁路路径,一般情况下指的是高频信号通过这个电容可以直接流向地或者其他节点。一般旁路电容会有两条并联的路径,旁路路径高频时相当于短路。
可将混有高频电流和低频电流的交流信号中的高频成分旁路滤掉的电容,称做“旁路电容”
去耦电容用在电路中不需要交流的地方,用来消除自激,使电路稳定工作。
去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。旁路电容实际也是去藕合
的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提供一条低阻抗泄放途径。高频旁路电容一般比较
小,根据谐振频率一般是 0.1u,0.01u 等,而去耦合电容一般比较大,是 10u 或者更大,依据电路中分布参数,
以及驱动电流的变化大小来确定。
先跟你说说去耦电和旁路电容的区别
去耦电容和旁路电容的区别
旁路电容不是理论概念,而是一个经常使用的实用方法,在50 -- 60年代,这个词也就有它特有的含义,现在已不多用。电子管或者晶体管是需要偏置的,就是决定工作点的直流供电条件。例如电子管的栅极相对于阴极往往要求加有负压,为了在一个直流电源下工作,就在阴极对地串接一个电阻,利用板流形成阴极的对地正电位,而栅极直流接地,这种偏置技术叫做“自偏”,但是对(交流)信号而言,这同时又是一个负反馈,为了消除这个影响,就在这个电阻上并联一个足够大的点容,这就叫旁路电容。后来也有的资料把它引申使用于类似情况。
去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声。数字电路中典型的去耦电容值是 0.1μF。这个电容的分布电感的典型值是5μH。0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于 10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用。1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些。每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右。最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感。要使用钽电容或聚碳酸酯电容。去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz取 0.01μF。
一般来说,容量为uf级的电容,象电解电容或钽电容,他的电感较大,谐振频率较小,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,同时,大电容还可以起到局部电荷池的作用,可以减少局部的干扰通过电源耦合出去;容量为0.001~0.1uf的电容,一般为陶瓷电容或云母电容,电感小,谐振频率高,对高频信号的阻抗较小,可以为高频干扰信号提供一条旁路,减少外界对该局部的耦合干扰
旁路是把前级或电源携带的高频杂波或信号滤除;去藕是为保正输出端的稳定输出(主要是针对器件的工作)而设的“小水塘”,在其他大电流工作时保证电源的波动范围不会影响该电路的工作;补充一点就是所谓的藕合:是在前后级间传递信号而不互相影响各级静态工作点的元件
有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。
摘引自伦德全《电路板级的电磁兼容设计》一文,该论文对噪声耦和路径、去耦电容和旁路电容的使用都讲得不错。请参阅。
从电路来说,总是存在驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。这就是耦合。
去耦电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。
旁路电容实际也是去耦合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小,根据谐振频率一般是 0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。
去耦电容由C1、C2、C3并联分别承担低频、高频交流成分滤波的任务。电解电容C1一般容量较大,在低频时能提供好的通路,而在高频时由于其寄生电感的存在阻抗将变大无法提供滤波通路,这里取10uF;陶瓷电容C2由于其容量一般较小,所以在低频时阻抗较大无法提供滤波通路,而在高频时阻抗变小则会有很好的滤波特性,这里取0.1uF;这样可以看出C1、C2的滤波特性是互补的,需要同时利用才能得到较宽频的有效滤波范围。当然,如果需要更宽的滤波频段还可用更多不同类型的电容并联得到,如这里的C3,取0.01uF。 电源线要尽可能宽,使阻抗降低,减小尖峰效应。去耦一定要好,数模电源
一定要分开,分别把高质量的陶瓷去耦电容尽可能近的接到各自引脚。这里再介绍一下电源去耦电路参数的选择:
再说说你的问题
去耦电容还是旁路电容抑或滤波电容,基本上都是利用电容对交变信号呈低阻性的特点,对于同一个电路来说,旁路电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦电容是把输出信号的干扰作为滤除对象。去耦和旁路都可以看作滤波。
我想觉得输入输出是相对的,因此TPS76901输入端的两个电容相对TPS76901来说是输入,相对前端3.3V电源来说是输出,所以单单说左边2个电容是旁路电容也不太准确。
0.1uF电容是旁路电容,把高频噪声过滤;4.7uF电容是去耦电容,相当于电池,避免由于电流的突变而使电压下降,避免相互间的耦合干扰。
这两个都是电源的输出滤波电容,稳定电压的平滑度。无所谓去耦旁路。直流电源输出都得加的。
去耦旁路一般是在具有交直流信号传送时才这样称呼。
旁路电容,是把输入信号中的高频成份加以滤除,主要是用于滤除高频杂波的,通常用瓷质电容、涤纶电容,容量较小,在皮法级。
去耦电容,是把输出信号的干扰作为滤除对象,去耦电容相当于电池,利用其充放电,使得放大后的信号不会因电流的突变而受干扰。它的容量根据信号的频率、抑制波纹程度而定
1:去耦合旁路都是针对高频噪音来说的
2:去耦就是去除耦合,让耦合进去的噪音再给耦合出去。
3:旁路就是提供一个低阻通路让其走开。
旁路电容不是理论概念,而是一个经常使用的实用方法,在50 -- 60年代,这个词也就有它特有的含义,现在已不多用。电子管或者晶体管是需要偏置的,就是决定工作点的直流供电条件。例如电子管的栅极相对于阴极往往要求加有负压,为了在一个直流电源下工作,就在阴极对地串接一个电阻,利用板流形成阴极的对地正电位,而栅极直流接地,这种偏置技术叫做“自偏”,但是对(交流)信号而言,这同时又是一个负反馈,为了消除这个影响,就在这个电阻上并联一个足够大的点容,这就叫旁路电容。后来也有的资料把它引申使用于类似情况。
去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声。数字电路中典型的去耦电容值是 0.1μF。这个电容的分布电感的典型值是5μH。0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于 10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用。1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些。每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右。最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感。要使用钽电容或聚碳酸酯电容。去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz取 0.01μF。
去耦电容一般都是10uf,几个uf级别,虑除来自电源的噪声,同时还能作为瞬时电源为芯片的提供瞬时电流,旁路电容一般比较小大概去耦电容的白分之一,虑除瞬时高频噪声。