微波EDA网,见证研发工程师的成长!
首页 > 研发问答 > 无线和射频 > 射频无线通信设计 > TD-SCDMA移动通信系统的增强和演进2

TD-SCDMA移动通信系统的增强和演进2

时间:10-02 整理:3721RD 点击:
1 TD-SCDMA到B3GTDD未来演进 TD-SCDMA的演进目标是提供更高速率的服务,降低时延和成本,改善覆盖范围和容量。而为了达到这样的目的,将引入许多先进的技术,如自适应调制编码(AMC)、混合自动请求重传(HARQ)、OFDM、MIMO和多载波技术等,其中许多革命性技术在演进过程中起着关键的作用,是峰值速率不断提高的根本动力。

在TD-SCDMA演进的过程中,随着用户业务需求的不断扩大,单载频系统中的部分小区(例如繁华地带)可能会出现业务量过大而无法承受的情况,因此必须考虑使用新的技术方案来对系统进行扩容。系统扩容可以通过小区分裂或者增加载频等方式来实现。相对于前者来说,后者对网络规划、设计等影响较小,且成本更低。因此,引入多载波技术可以有效解决系统容量不足的问题。通过引入HSxPA(包括HSDPA和HSUPA,还有增强技术HSPA+)能够进一步地提高上下行链路数据业务的吞吐量,HSxPA时代最显著的技术是AMC和HARQ。
MIMO和OFDM技术是在B3G/4G系统中最为革命性的技术,是LTE TDD时代显著的标志。OFDM技术可以有效地改善频谱效率,随着计算机的发展和现代信号处理技术的进步,快速傅立叶变换/快速傅立叶逆变换(FFT/IFFT)的实现使OFDM技术在系统中实现的复杂程度大大降低。随着MIMO多天线技术的发展,在通信链路中引入了空域的概念,与时域、频域和码域一起获得分集或复用增益,使通信系统的容量成倍增加,从而从本质上提高了传输速率。但MIMO技术更适于平坦信道,而在宽带无线通信中大多是频率选择性信道,这时,OFDM与MIMO的结合,恰好利用了OFDM的循环前缀(CP)技术,克服多径影响,把频率选择性信道改造为平坦信道,再应用MIMO技术,传输增益显著[3]。
如上所述,从TD-SCDMA到TDD未来演进时代的演进过程如图1所示,演进过程大体分为4个阶段,每个阶段又分不同层次:分别是单载波/多载波TD-SCDMA系统、单载波/多载波HSxPA系统、 LTE系统和基于TD-SCDMA的第4代移动通信系统(即TDD B3G/4G)。

1.1TD-SCDMA第1阶段
第一阶段主要包括单载波和多载波的TD-SCDMA,采用的关键技术包括CDMA、上行同步、智能天线、联合检测、动态信道分配等,核心网基于3GPP标准的R4版本,单载波极限速率为2 Mb/s,而对于N 载波技术,理论极限速率可以达到N× 2 Mb/s。
1.1.1单载波技术
TD-SCDMA阶段就是现在的TD-SCDMA系统,采用了智能天线、联合检测、动态信道分配、软件无线电、上行同步码分多址技术、接力切换、低码片速率、多时隙、可变扩频、自适应功率调整和3GPP提出的高层协议和核心网。TD-SCDMA核心网采用R4版本。TD-SCDMA与WCDMA系统有很好的兼容性,并且满足了国际电联和3GPP提出的3G系统的指标要求,实现了3G的各种场景环境。由于采用TDD模式,上下行链路使用同一频率,同一时刻上下行链路的空间物理特性相似,可以采取一些自适应无线信号处理技术,同时实现上下行链路间的灵活切换。这一模式的优势是,在上下行链路间的时隙分配可以被一个转换点改变,以满足不同的业务要求。通过改变上下行链路的转换点可以实现所有3G对称和非对称业务。TD-SCDMA与联合检测相结合,在传输容量方面有显著增益。通过引进智能天线,容量还可以进一步提高。智能天线凭借其天线定向性和智能性减小了小区内和小区间的干扰,能够提供更好的通信质量,提高系统容量,并且扩大小区的覆盖范围。
1.1.2多载波技术
多载波技术是相对单载波技术而言的,就是在一个小区中配置多个载频。若将每个载频视为一个逻辑小区,则多载波小区实际上等效于将原来独立的多个单载波小区合并到一起,并将公共信道进行合并,这样就形成了一个多载波小区,从而大大提高系统的业务承载能力。多载波技术的提出是从发展的角度来看待网络容量的演变,这将有利于TD-SCDMA系统的进一步完善。在不考虑频率间相互干扰的情况下,多载波TD-SCDMA系统的容量将会是单载波系统容量的N 倍(N 为载波数)。然而由于小区内载频间的混叠干扰,系统容量将会小于N 倍单载频系统的容量。

谢谢,支持一下,顶上

性用品

操盘手

seo培训

广州seo
美国股票指数

谢谢分享支持

楼主是好人啊
谢谢

帮顶! TD

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top