插装PCB的可制造性设计考虑
时间:10-02
整理:3721RD
点击:
排版与布局
在设计阶段排版得当可避免很多制造过程中的麻烦,并将焊接缺陷降低到最低。在进行元器件布局时要考虑以下几点:
1)由于翘曲和重量原因较大尺寸的PCB在生产中运输会比较困难,它需要用特殊的夹具进行固定,因此应尽量避免使用大于23 30cm的板面。最好是将所有PCB板子的尺寸控制在两三种之内,这样有助于在产品更换时缩短调整导轨、周转箱宽度等所引致的停机时间。
2)大多数自动装配设备要求PCB留出一定的边缘便于设备夹持。这个夹持边的范围应为5mm, 在此范围内不允许布放元器件和焊盘。
3)尽量在PCB板子的顶面(元件面)进行布线,PCB底面(焊接面)容易受到损坏。不要在靠近PCB板子边缘的地方布线,因为生产过程中都是通过板边进行抓持,边上的线路会被波峰焊设备的卡爪或边框传送器损坏。
4)对于具有较高引脚数的器件如接线座或扁平电缆,应使用椭圆形焊盘而不是圆形以防止波峰焊时出现锡桥。
5)尽可能使定位孔间距及其与元件之间的距离大一些,并根据插装设备对其尺寸进行标准化和优化处理;
6)尽量使定位孔也作为PCB在最终产品中的安装孔使用,这样可减少制作时的钻孔工序。
7)对于较大的PCB,应在板中心留出一条通路以便过波峰焊时在中心位置对PCB进行支撑,防止PCB板子下垂和焊锡溅射,有助于板面焊接一致。
8)排版设计时应考虑针床可测性问题,可以用平面焊盘(无引线)以便在线测试时与引脚的连接更好,使所有电路节点均可测试。
元件的定位与安放
1)排列元件方向时要考虑轴向元件应相互平行,这样轴向插装机在插装时就不需要旋转PCB,因为不必要的转动和移动会大幅降低插装机的速度。
2)相似的元件在板面上应以相同的方式排放。例如使所有径向电容的负极朝向板件的右面,使所有双列直插封装(DIP)的缺口标记面向同一方向等等,这样可以加快插装的速度并更易于发现错误。如图2示,由于A板采用了这种方法,所以能很容易地找到反向电容器,而B板查找则需要用较多时间。
3)将双列直插封装器件、连接器及其它高引脚数元件的排列方向与过波峰焊的方向垂直,这样可以减少元件引脚之间的锡桥。
4)标出元件参考符(CRD)以及极性指示,并在元件插入后仍然可见,这在检查和故障排除时很有帮助,并且也是一个很好的维护性工作。
5)避免在PCB两面均安放元件,因为这会大幅增加装配的人工和时间。如果元件必须放在底面,则应尽量靠近以便一次完成防焊胶带的遮蔽与剥离操作。
6)尽量使元件均匀地分布在PCB上,以降低翘曲并有助于使其在过波峰焊时热量分布均匀。
7)功率器件应均匀地放置在PCB边缘或机箱内的通风位置上;
8)贵重的元器件不要布放在PCB的角、边缘,或靠近安装孔、槽、拼板的切割、豁口和拐角等处,以上这些位置是印制板的高应力区,容易造成焊点和元器件的开裂或裂纹。
对于用通孔插装技术进行PCB组装的制造商来说,可制造性设计是一个极为有用的工具,它可节约大量费用并减少很多麻烦。使用可制造性设计方法能减少工程更改以及将来在设计上作出让步,这些好处都是非常直接的。希望本文介绍的这些原则能对相关设计人员有所帮助,并促进相互之间有更好的交流。
在设计阶段排版得当可避免很多制造过程中的麻烦,并将焊接缺陷降低到最低。在进行元器件布局时要考虑以下几点:
1)由于翘曲和重量原因较大尺寸的PCB在生产中运输会比较困难,它需要用特殊的夹具进行固定,因此应尽量避免使用大于23 30cm的板面。最好是将所有PCB板子的尺寸控制在两三种之内,这样有助于在产品更换时缩短调整导轨、周转箱宽度等所引致的停机时间。
2)大多数自动装配设备要求PCB留出一定的边缘便于设备夹持。这个夹持边的范围应为5mm, 在此范围内不允许布放元器件和焊盘。
3)尽量在PCB板子的顶面(元件面)进行布线,PCB底面(焊接面)容易受到损坏。不要在靠近PCB板子边缘的地方布线,因为生产过程中都是通过板边进行抓持,边上的线路会被波峰焊设备的卡爪或边框传送器损坏。
4)对于具有较高引脚数的器件如接线座或扁平电缆,应使用椭圆形焊盘而不是圆形以防止波峰焊时出现锡桥。
5)尽可能使定位孔间距及其与元件之间的距离大一些,并根据插装设备对其尺寸进行标准化和优化处理;
6)尽量使定位孔也作为PCB在最终产品中的安装孔使用,这样可减少制作时的钻孔工序。
7)对于较大的PCB,应在板中心留出一条通路以便过波峰焊时在中心位置对PCB进行支撑,防止PCB板子下垂和焊锡溅射,有助于板面焊接一致。
8)排版设计时应考虑针床可测性问题,可以用平面焊盘(无引线)以便在线测试时与引脚的连接更好,使所有电路节点均可测试。
元件的定位与安放
1)排列元件方向时要考虑轴向元件应相互平行,这样轴向插装机在插装时就不需要旋转PCB,因为不必要的转动和移动会大幅降低插装机的速度。
2)相似的元件在板面上应以相同的方式排放。例如使所有径向电容的负极朝向板件的右面,使所有双列直插封装(DIP)的缺口标记面向同一方向等等,这样可以加快插装的速度并更易于发现错误。如图2示,由于A板采用了这种方法,所以能很容易地找到反向电容器,而B板查找则需要用较多时间。
3)将双列直插封装器件、连接器及其它高引脚数元件的排列方向与过波峰焊的方向垂直,这样可以减少元件引脚之间的锡桥。
4)标出元件参考符(CRD)以及极性指示,并在元件插入后仍然可见,这在检查和故障排除时很有帮助,并且也是一个很好的维护性工作。
5)避免在PCB两面均安放元件,因为这会大幅增加装配的人工和时间。如果元件必须放在底面,则应尽量靠近以便一次完成防焊胶带的遮蔽与剥离操作。
6)尽量使元件均匀地分布在PCB上,以降低翘曲并有助于使其在过波峰焊时热量分布均匀。
7)功率器件应均匀地放置在PCB边缘或机箱内的通风位置上;
8)贵重的元器件不要布放在PCB的角、边缘,或靠近安装孔、槽、拼板的切割、豁口和拐角等处,以上这些位置是印制板的高应力区,容易造成焊点和元器件的开裂或裂纹。
对于用通孔插装技术进行PCB组装的制造商来说,可制造性设计是一个极为有用的工具,它可节约大量费用并减少很多麻烦。使用可制造性设计方法能减少工程更改以及将来在设计上作出让步,这些好处都是非常直接的。希望本文介绍的这些原则能对相关设计人员有所帮助,并促进相互之间有更好的交流。