微波EDA网,见证研发工程师的成长!
首页 > 研发问答 > 无线和射频 > 射频无线通信设计 > 3G安全的保密性算法——f8算法基于c语言的实现

3G安全的保密性算法——f8算法基于c语言的实现

时间:10-02 整理:3721RD 点击:
请哪位大神帮我做个主程序。子程序都有。
这是kasumi算法的程序代码。
typedef unsigned  char   u8;
typedef unsigned short  u16;
typedef unsigned  long  u32;
void KeySchedule( u8 *key );
void Kasumi( u8 *data );
#define ROL16(a,b) (u16)((a<<b)|(a>>(16-b)))
typedef union {
    u32 b32;
    u16 b16[2];
    u8  b8[4];
} DWORD;
typedef union {
    u16 b16;
    u8  b8[2];
} WORD;
static u16 KLi1[8], KLi2[8];
static u16 KOi1[8], KOi2[8], KOi3[8];
static u16 KIi1[8], KIi2[8], KIi3[8];

static u16 FI( u16 in, u16 subkey )
{
    u16 nine, seven;
    static u16 S7[] = {
        54, 50, 62, 56, 22, 34, 94, 96, 38, 6, 63, 93, 2, 18,123, 33,
        55,113, 39,114, 21, 67, 65, 12, 47, 73, 46, 27, 25,111,124, 81,
        53, 9,121, 79, 52, 60, 58, 48,101,127, 40,120,104, 70, 71, 43,
        20,122, 72, 61, 23,109, 13,100, 77, 1, 16, 7, 82, 10,105, 98,
        117,116, 76, 11, 89,106, 0,125,118, 99, 86, 69, 30, 57,126, 87,
        112, 51, 17, 5, 95, 14, 90, 84, 91, 8, 35,103, 32, 97, 28, 66,
        102, 31, 26, 45, 75, 4, 85, 92, 37, 74, 80, 49, 68, 29,115, 44,
        64,107,108, 24,110, 83, 36, 78, 42, 19, 15, 41, 88,119, 59, 3};
    static u16 S9[] = {
        167,239,161,379,391,334,  9,338, 38,226, 48,358,452,385, 90,397,
        183,253,147,331,415,340, 51,362,306,500,262, 82,216,159,356,177,
        175,241,489, 37,206, 17,  0,333, 44,254,378, 58,143,220, 81,400,
         95,  3,315,245, 54,235,218,405,472,264,172,494,371,290,399, 76,
        165,197,395,121,257,480,423,212,240, 28,462,176,406,507,288,223,
        501,407,249,265, 89,186,221,428,164, 74,440,196,458,421,350,163,
        232,158,134,354, 13,250,491,142,191, 69,193,425,152,227,366,135,
        344,300,276,242,437,320,113,278, 11,243, 87,317, 36, 93,496, 27,
        487,446,482, 41, 68,156,457,131,326,403,339, 20, 39,115,442,124,
        475,384,508, 53,112,170,479,151,126,169, 73,268,279,321,168,364,
        363,292, 46,499,393,327,324, 24,456,267,157,460,488,426,309,229,
        439,506,208,271,349,401,434,236, 16,209,359, 52, 56,120,199,277,
        465,416,252,287,246,  6, 83,305,420,345,153,502, 65, 61,244,282,
        173,222,418, 67,386,368,261,101,476,291,195,430, 49, 79,166,330,
        280,383,373,128,382,408,155,495,367,388,274,107,459,417, 62,454,
        132,225,203,316,234, 14,301, 91,503,286,424,211,347,307,140,374,
         35,103,125,427, 19,214,453,146,498,314,444,230,256,329,198,285,
         50,116, 78,410, 10,205,510,171,231, 45,139,467, 29, 86,505, 32,
         72, 26,342,150,313,490,431,238,411,325,149,473, 40,119,174,355,
        185,233,389, 71,448,273,372, 55,110,178,322, 12,469,392,369,190,
          1,109,375,137,181, 88, 75,308,260,484, 98,272,370,275,412,111,
        336,318,  4,504,492,259,304, 77,337,435, 21,357,303,332,483, 18,
         47, 85, 25,497,474,289,100,269,296,478,270,106, 31,104,433, 84,
        414,486,394, 96, 99,154,511,148,413,361,409,255,162,215,302,201,
        266,351,343,144,441,365,108,298,251, 34,182,509,138,210,335,133,
        311,352,328,141,396,346,123,319,450,281,429,228,443,481, 92,404,
        485,422,248,297, 23,213,130,466, 22,217,283, 70,294,360,419,127,
        312,377,  7,468,194,  2,117,295,463,258,224,447,247,187, 80,398,
        284,353,105,390,299,471,470,184, 57,200,348, 63,204,188, 33,451,
         97, 30,310,219, 94,160,129,493, 64,179,263,102,189,207,114,402,
        438,477,387,122,192, 42,381,  5,145,118,180,449,293,323,136,380,
         43, 66, 60,455,341,445,202,432, 8,237, 15,376,436,464, 59,461};
    nine  = (u16)(in>>7);
    seven = (u16)(in&0x7F);
    nine  = (u16)(S9[nine]  ^ seven);
    seven = (u16)(S7[seven] ^ (nine & 0x7F));
    seven ^= (subkey>>9);
    nine  ^= (subkey&0x1FF);
   
    nine  = (u16)(S9[nine]  ^ seven);
    seven = (u16)(S7[seven] ^ (nine & 0x7F));
    in = (u16)((seven<<9) + nine);
    return( in );
}
static u32 FO( u32 in, int index )
{
    u16 left, right;
    left  = (u16)(in>>16);
    right = (u16) in;
    left ^= KOi1[index];
    left  = FI( left, KIi1[index] );
    left ^= right;
    right ^= KOi2[index];
    right  = FI( right, KIi2[index] );
    right ^= left;
    left ^= KOi3[index];
    left  = FI( left, KIi3[index] );
    left ^= right;
    in = (((u32)right)<<16)+left;
    return( in );
}
static u32 FL( u32 in, int index )
{
    u16 l, r, a, b;
    /* split out the left and right halves */
    l = (u16)(in>>16);
    r = (u16)(in);
    /* do the FL() operations            */
    a  = (u16) (l & KLi1[index]);
    r ^= ROL16(a,1);
    b  = (u16)(r | KLi2[index]);
    l ^= ROL16(b,1);
    /* put the two halves back together */
    in = (((u32)l)<<16) + r;
    return( in );
}
void Kasumi( u8 *data )
{
    u32 left, right, temp;
    DWORD *d;
    int n;
    d = (DWORD*)data;
    left  = (((u32)d[0].b8[0])<<24)+(((u32)d[0].b8[1])<<16)
+(d[0].b8[2]<<8)+(d[0].b8[3]);
    right = (((u32)d[1].b8[0])<<24)+(((u32)d[1].b8[1])<<16)
+(d[1].b8[2]<<8)+(d[1].b8[3]);
    n = 0;
    do{     temp = FL( left, n   );
        temp = FO( temp,  n++ );
        right ^= temp;
        temp = FO( right, n   );
        temp = FL( temp,   n++ );
        left ^= temp;
    }while( n<=7 );
    /* return the correct endian result */
    d[0].b8[0] = (u8)(left>>24);        d[1].b8[0] = (u8)(right>>24);
    d[0].b8[1] = (u8)(left>>16);        d[1].b8[1] = (u8)(right>>16);
    d[0].b8[2] = (u8)(left>>8);        d[1].b8[2] = (u8)(right>>8);
    d[0].b8[3] = (u8)(left);            d[1].b8[3] = (u8)(right);
}
void KeySchedule( u8 *k )
{
    static u16 C[] = {
        0x0123,0x4567,0x89AB,0xCDEF, 0xFEDC,0xBA98,0x7654,0x3210 };
    u16 key[8], Kprime[8];
    WORD *k16;
    int n;
    k16 = (WORD *)k;
    for( n=0; n<8; ++n )
        key[n] = (u16)((k16[n].b8[0]<<8) + (k16[n].b8[1]));
    for( n=0; n<8; ++n )
        Kprime[n] = (u16)(key[n] ^ C[n]);
    for( n=0; n<8; ++n )
    {
        KLi1[n] = ROL16(key[n],1);
        KLi2[n] = Kprime[(n+2)&0x7];
        KOi1[n] = ROL16(key[(n+1)&0x7],5);
        KOi2[n] = ROL16(key[(n+5)&0x7],8);
        KOi3[n] = ROL16(key[(n+6)&0x7],13);
        KIi1[n] = Kprime[(n+4)&0x7];
        KIi2[n] = Kprime[(n+3)&0x7];
        KIi3[n] = Kprime[(n+7)&0x7];
    }
}
这是f8算法的程序代码。
void f8( u8 *key, int count, int bearer, int dir, u8 *data, int length )
{
    REGISTER64 A;        
    REGISTER64 temp;        
    int i, n;
    u8  ModKey[16];        
    u16 blkcnt;            
    temp.b32[0]  = temp.b32[1]  = 0;
    A.b32[0]     = A.b32[1]     = 0;
    A.b8[0]  = (u8) (count>>24);
    A.b8[1]  = (u8) (count>>16);
    A.b8[2]  = (u8) (count>>8);
    A.b8[3]  = (u8) (count);
    A.b8[4]  = (u8) (bearer<<3);
    A.b8[4] |= (u8) (dir<<2);
    for( n=0; n<16; ++n )
        ModKey[n] = (u8)(key[n] ^ 0x55);
    KeySchedule( ModKey );
    Kasumi( A.b8 );   
    blkcnt = 0;
    KeySchedule( key );
        while( length > 0 )
    {
        temp.b32[0] ^= A.b32[0];
        temp.b32[1] ^= A.b32[1];
        temp.b8[7]  ^= blkcnt;
        Kasumi( temp.b8 );
        if( length >= 64 )
            n = 8;
        else
            n = (length+7)/8;
   
        for( i=0; i<n; ++i )
            *data++ ^= temp.b8[i];
        length -= 64;   
        ++blkcnt;        
    }
}

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top