微波EDA网,见证研发工程师的成长!
首页 > 研发问答 > 硬件电路设计 > 硬件电路设计讨论 > 对电阻使用的经验法则说不

对电阻使用的经验法则说不

时间:10-02 整理:3721RD 点击:

说明:在ADI网站看到Harry Holt 写的一篇关于运放电路设计的文章觉得不错,转载于此。原文网址:http://www.analog.com/cn/analog-dialogue/articles/studentzone-june-2017.html?ADICID=EMAL_CN_P1185_SUB-NL-PN_59&ECID=6F056642-EC3D-E611-80E7-5065F38B0191&6430

正文如下:
按照许多年前老师的教导,我们会在运算放大器的两个输入端放上相等的阻抗。本文探究为什么会有这么一条经验法则,以及我们是否应当遵循这种做法。
老师的教导
如果您是在741运算放大器1横行天下的时代长大的,那么平衡运算放大器输入端电阻的观念必定已扎根在您的头脑中。随着时间的流逝,由于不同电路技术和不同IC工艺的出现,这样做可能不再是对的。事实上,它可能引起更大直流误差和更多噪声,使电路更不稳定。我们以前为什么要那样做?什么变化导致我们现在这样做可能是错误的?
在二十世纪六十年代和七十年代,第一代运算放大器采用普通双极性工艺制造。为获得合理的速度,差分对电流源电流一般在10 μA到20 μA范围内。
而β值为40到70,故输入偏置电流在1 μA左右。然而,晶体管匹配度不是那么高,所以输入偏置电流不相等,导致输入偏置电流之间有10%到20%的偏差(称为"输入失调电流")。
在同相接地输入端增加一个与输入电阻R1和反馈电阻R2的并联组合相等的电阻(图1中的R3),可以让阻抗相等。做一些计算可以证明,误差降至Ioffset × Rfeedback。由于Ioffset为Ibias的10%到20%,所以这会有助于降低输出失调误差。


图1. 经典反相放大器
直流误差
为降低双极性运算放大器的输入偏置电流,许多运算放大器设计集成了输入偏置电流消除功能。OP07就是一个例子。输入偏置电流消除功能的增加2使偏置电流大大降低,但输入失调电流可能为剩余偏置电流的50%到100%,所以增加电阻的作用非常有限。某些情况下,增加电阻反而可能导致输出误差提高。
噪声
电阻热噪声的计算公式为√4kTRB,故1 kΩ电阻会有4 nV/√Hz的噪声。增加电阻会增加噪声。在图2中,出人意料的是,虽然909 Ω补偿电阻是值最低的电阻,但由于从该节点到输出端的噪声增益,它给图2输出端贡献的噪声最多。R1引起的输出噪声为40 nV/√Hz,R2为12.6 nV/√Hz,R3为42 nV/√Hz。因此,请勿使用电阻。另一方面,如果运算放大器采用双电源供电,并且一个电源先于另一个电源上电,那么ESD网络可能发生闩锁问题。这种情况下,可能希望增加一定的电阻来保护器件。但若使用的话,应在电阻上放置一个旁路电容以减少电阻的噪声贡献。


图2. 噪声分析
稳定性
所有运算放大器都有一定的输入电容,包括差分和共模。如果运算放大器连接为跟随器,并且在反馈路径中放入一个电阻以平衡阻抗,那么系统可能容易发生振荡。原因是:大反馈电阻、运算放大器的输入电容和PC板上的杂散电容会形成一个RC低通滤波器(LPF)。此滤波器会引起相移,并降低闭环系统的相位裕量。如果降低得太多,运算放大器就会振荡。一位客户在一个1 Hz Sallen-Key低通滤波器电路中使用AD8628 CMOS运算放大器。由于转折频率较低,电阻和电容相当大(参见图3)。输入电阻为470 kΩ,所以客户在反馈路径中放入一个470 kΩ电阻。此电阻与8 pF的输入电容(参见图4)一起提供一个42 kHz极点。AD8628的增益带宽积为2 MHz,因此它在42 kHz仍有大量增益,它发生了轨到轨振荡。把470 kΩ电阻换成0 Ω跳线即解决了问题。因此,反馈路径中应避免使用大电阻。这里,何者为大取决于运算放大器的增益带宽。对于高频运算放大器,例如增益带宽超过400 MHz的ADA4817-1,1 kΩ反馈电阻就称得上是大电阻。务必阅读数据手册以了解其中的建议。

图3. 您所见


图4. 电子所见
结语
多年来的实践会产生一些有用的经验法则。审核设计时,仔细检视这些规则,判定它们是否仍然适用是很好的做法。关于是否需要增加平衡电阻,如果运算放大器是带有输入偏置电流消除功能的CMOS、JFET或双极型,那么很可能不需要添加。
读完本文后,您可能会意外提问是关于噪声的。
请回答以下三个问题:
问题1:以下哪个噪声是在电阻中产生的?

  • 爆米花噪声
  • 红噪声
  • 粉红噪声
  • 1/f噪声
  • 白噪声
  • 约翰逊噪声
  • 奈奎斯特噪声
  • 白噪声
问题2:室温(20°C)条件下,等效噪声带宽为20 kHz时,10 kΩ电阻产生的均方根噪声是多少?


问题3:24位音频ADC的输入电压范围为2.5 V时,用此VNOISE可以获得多少闪烁位?
您可以在 学子专区博客 找到问题答案。
参考电路
1 Ken Shirriff. “了解硅电路:普遍使用的741运算放大器揭秘.” 2015年。
2 “教程MT-038:运算放大器输入偏置电流.” 。ADI公司,2009年。
作者


Harry Holt

Harry Holt 是ADI核心应用部门的高级应用工程师。之前,他在精密放大器部门任职五年。Harry曾在美国国家半导 体公司工作了 27 年,从事各种产品的现场和工厂应用,包括数据转换器、运算放大器、基准源、音频编解码器和FPGA。他持有圣何塞州 立大学的电子工程学士学位(BSEE),并且是国家工程荣誉协会(Tau Beta Pi)终身会员和IEEE的高级会员。


这个问题还是第一次听说  学习了解一下

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top