微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 测试测量 > 复杂RF环境下的RFID测试挑战

复杂RF环境下的RFID测试挑战

时间:03-12 来源:泰克公司 点击:

高了信号的抗干扰能力。对采用同等商用版本ISO 18185的集装箱应用,这要求最大传输周期提高到60s,同时在传输之间保持10s的最低静默周期(FCC part 15.240)。在这么慢的传送速率下,可能要用两分钟才能传送识别集装箱所有货物所需的整个128kB数据。根据这一标准使用的标签是有源标签,也就是说它们带有机载电源,一般辐射功率要高于无源标签。

这两种技术都意味着测试解决方案必需在相对较长的时间周期内收集与脉冲式信号有关的详细的RF数据。

密集模式环境测试解决方案

  可以使用任意波形发生器(AWG)仿真密集模式环境。现代AWG可以通过编程直接生成在HF频段和UHF频段的RFID信号,进而使用一台仪器仿真各种信号,如多个阅读器或多个标签,从而降低必须配置多台信号发生器所引起的时间和成本。

\

分析设备通常需要非常深的存储器,才能捕获这些冗长的交互。一般来说,标签阅读器会尝试多个查询,可能会命令标签降低链路频率,以检验标签是否像某些实现方案要求的那样空出通道。实时频谱仪(RTSA)能够分析这类事件。

  RTSA可以直接检验ISO18000-7的60s传输周期和10s静默周期,在这一应用中的存储深度超过100s,能全面分析错误条件。

  此外,还可以使用多次采集来分析跳频和突发RFID信号。在这种模式下,RTSA能被设置为捕获那些用户自定义时间周期内任何时候发生跳频和相关触发的数据。结合了超高帧速率(超过48,000frame/s),可以全面捕获、分析和解调跳频RFID信号。

  一旦捕获了信号,设备可以采用相应的方式分析信号,帮助工程师了解阅读器和标签在当前RF环境中的性能是否达到预期的水平,以及如果没有,为什么没有。测量位时间、CW时间及阅读器和标签之间的响应时间(称为周转时间)能提供重要信息,帮助了解阅读器和标签的交互和吞吐量。针对频率事件检查幅度毛刺有助于确定错误的根本原因。例如如果某个位没有正确解码,那么它是FSK调制错误引起的还是ASK 调制错误引起的?把各个域中的数据关联起来,有助于回答这类问题。

  现代RTSA可以把频域、时域、符号域和其它域中的数据关联起来,全面迅速地分析复杂的RF环境和物理层交互。对于自动改变数据速率的ISO18000-6C (EPC GEN2)信号,这些仪器可以自动检测符号速率,突出显示前置码,更轻松地完成分析任务。

  监测RFID同频道干扰

  RFID收发机必须遵守“产生干扰有关的”本地法规,设计提供最优的抗干扰能力。例如,新加坡和欧洲分配的频谱是2MHz,而北美则变成了26MHz,这使得世界各地采用的调制方案和避免冲突的技术有所不同。

\

  有两种方法可以避免冲突,降低自我干扰,即跳频技术(FH)和先听后说(LBT)/RFID阅读器同步技术。美国根据FCC 47 CFG Ch. 1 Part 15采用跳频技术,大部分欧洲国家则根据ETSI EN 302 208-1采用LBT或同步技术。

  在实际环境中,有效地分析RFID信号可能是一项复杂的任务。在一个突发干扰源于多阅读器、多标签响应、甚至Wi-Fi、ZigBee、蓝牙和类似短程RF通信等其它RF服务的环境中,这些信号也具有突发特点。

\

其中一种最优秀的监测技术是称为DPX的RTSA数字荧光技术。这种技术采用非常快的帧速率,同时用颜色表明信号密度或驻留时间,以独特的方式查看复杂环境中的脉冲式RF信号。

  图6展现了一个仿真的复杂RF环境,通过将大量的标签放在阅读器的阅读范围内形成。在监测阅读器跳频输出短短30秒后,我们可以看到大量的信息。让我们更仔细地看一下这个彩色显示画面。

\

红色信号一直存在,在本例中,它代表着噪底及接近显示画面底部的多个干扰信号。绿色信号(在本例中主要是突发干扰) 可能在50%的时间中存在,蓝色信号是偶发信号,右下角的信号密度标度表明了这一点。

  蓝色信号主要是RFID信号,是阅读器与一套标签之间的通信信号。在本例中,调制类型采用幅移键控(ASK),高度较高的窄蓝色脉冲是“1”,较低的窄蓝色脉冲是“0”。DPX可以查看传统扫频分析仪看不到的信号。

  在这个屏幕截图中,阅读器在多个频率上成功运行,没有被干扰。首先,我们看到的(主要呈)蓝色RFID脉冲只发生在干净的频率上,就可以说明这一点。其次,通过查看主要呈蓝色的RFID脉冲上的其它颜色,我们可以确定RFID成功交易的扩展驻留时间。同时我们可以看到在那些没有干扰或者信噪比比较好的频率上,阅读器才能进行成功的巡检。这清楚地表明,在干扰最低的环境中,标签读取成功的概率会提高。

在进行频率规划,把每个阅读器限定在某条通道(或多条通道)时,可以使用DPX保证调制边带的电平不会在并放阅读器使用的通道中产生干扰。注意图6中心的阅读器和标签信号拥有宽频谱展

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top