微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 测试测量 > 示波器的发展史与选择示波器的几点建议

示波器的发展史与选择示波器的几点建议

时间:07-17 来源:大西洋仪器 点击:
    • 一个决定所需要的示波器带宽有效的经验法则是“5倍准则”;即将要测量的信号最高频率分量乘以5。这将会使在测量中获得高于2%的精度。在某些应用场合,若不知道感兴趣的信号带宽,但是知道它的最快上升时间,大多数字示波器的频率响应用下面的公式来计算关联带宽和仪器的上升时间:Bw=0.35/信号的最快上升时间。

         带宽有两种类型:重复(或等效时间)带宽和实时(或单次)带宽。重复带宽只适用于重复的信号,显示来自于多次信号采集期间的采样。实时带宽是示波器的单次采样中所能捕捉的最高频率,且当捕捉的事件不是经常出现时要求相当苛刻。实时带宽与采样速率联系在一起。

        由于更宽的带宽往往意味着更高的价格,因此应对照你的预算来评定通常要观察信号的频率成分。

      4、采样速率怎样?

          采样速率定义为每秒采样次数(S/s),指数字示波器对信号采样的频率。示波器的采样速率越快,所显示的波形的分辨率和清晰度就高,重要信息和事件丢失的概率就越小。如果需要观测较长时间范围内的慢变信号,则最小采样速率就变得较为重要。为了在显示的波形记录中 保持固定的波形数,需要调整水平控制按钮,而所显示的采样速率也将随着水平调节按钮的调节而变化。
      计算的采样速率方法取决于所测量的波形的类型,以及示波器所采用的信号重建方式。
      为了准确地再现信号并避免混淆,奈奎斯定理规定:信号的采样速率必须不小于其最高频率成分的两倍。然而,这个定理的前提是基于无限长时间和连续的信号。由于没有示波器可以提供无限时间的记录长度,而且,从定义上看,低频干扰是不连续的,所以采用两倍于最高频率成分的采样速率通常是不够的。实际上,信号的准确再现取决于其采样速率和信号采样点间隙所采用的插值法。一些示波器会为操作者提供以下选择:测量正弦信号的正弦插值法,以及测量矩形波、脉冲和其他信号类型的线性插值法。

         有一个在比较取样速率和信号带宽时很有用的经验法则:如果您正在观察的示波器有内插(通过筛选以便在取样点间重新生成),则(取样速率/信号带宽)的比值至少应为4∶1。无正弦内插时,则应采取10∶1的比值。

      5、屏幕刷新率多快?

         所有的示波器都会闪烁。也就是说,示波器每秒钟以特定的次数捕获信号,在这些测量点之间将不再进行测量。这就是波形捕获速率,也称屏幕刷新率,表示为波形数每秒(wfms/s)。采样速率表示的是示波器在一个波形或周期内,采样输入信号的频率; 波形捕获速率则是指示波器采集波形的速度。波形捕获速率取决于示波器的类型和性能级别,且有着很大的变化范围。高波形捕获速率的示波器将会提供更多的重要信号特性,并能极大地增加示波器快速捕获瞬时的异常情况,如抖动、矮脉冲、低频干扰和瞬时误差的概率。

        数字存储示波器(DSO)使用串行处理结构每秒钟可以捕获10到5000个波形。DPO数字荧光示波器采用并行处理结构,可以提供更高的波形捕获速率,有的高达每秒数百万个波形,大大提高了捕获间歇和难以捕捉事件的可能性,并能更快地发现信号存在的问题。

      6、存储深度是多少?

         存储深度是示波器所能存储的采样点多少的量度。如果需要不间断的捕捉一个脉冲串,则要求示波器有足够的存储器以便捕捉整个事件。将所要捕捉的时间长度除以精确重现信号所须的取样速度,可以计算出所要求的存储深度,也称记录长度。
         在正确位置上捕捉信号的有效触发,通常可以减小示波器实际需要的存储量。存储深度与取样速度密切相关。所需要的存储深度取决于要测量的总时间跨度和所要求的时间分辨率。现代的示波器允许用户选择记录长度,以便对一些操作中的细节进行优化。分析一个十分稳定的正弦信号,只需要500点的记录长度;但如果要解析一个复杂的数字数据流,则需要有一百万个点或更多点的记录长度。

      7、要求何种触发?

          示波器的触发能使信号在正确的位置点同步水平扫描,决定着信号特性是否清晰。触发控制按钮可以稳定重复的波形并捕获单次波形。大多数通用示波器的用户只采用边沿触发方式,但是其它触发方式在某些应用场合,例如对新设计产品的故障查寻是非常有用的。先进的触发方式可将所关心的事件分离出来,从而最有效地利用取样速度和存储深度。
         现今有很多示波器,具有先进的触发能力:能根据由幅度定义的脉冲(如短脉冲),由时间限定的脉冲(脉冲宽度、窄脉冲、转换率、建立/保持时间)和由逻辑状态或图形描述的脉冲(逻辑触发)进行触发。扩展和常规的触发功能组合也帮助显示视频和其它难以捕捉的信号,如此先进的触发能力,在设置测试过程时提供了很大程度的灵活性,而且能大大地简化工作。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top