开环功控与闭环功控的差异是什么,各有那些优缺点?
在TD_SCDMA和CDMA中有开环和闭环功控这个技术。
请问:
开环功控与闭环功控的差异是什么,各有那些优缺点?
补充一下:
1.开环功率控制
开环功率控制是根据上行链路的干扰情况估算下行链路,或是根据下行链路的干扰情况估算上行链路,是单向不闭合的。
图2 开环功率控制
如图2所示,UE测量公共导频信道CPICH的接收功率并估算NodeB的初始发射功率,然后计算出路径损耗,根据广播信道BCH得出干扰水平和解调门限,最后UE计算出上行初始发射功率作为随机接入中的前缀传输功率,并在选择的上行接入时隙上传送(随机接入过程)。开环功率控制实际上是根据下行链路的功率测量对路径损耗和干扰水平进行估算而得出上行的初始发射功率,所以,初始的上行发射功率只是相对准确值。
WCDMA系统采用的FDD模式,上行采用1920~1980MHz、下行采用2110~2170MHz,上下行的频段相差190MHz。由于上行和下行链路的信道衰落情况是完全不同的,所以,开环功率控制只能起到粗略控制的作用。但开环功控却能相对准确地计算初始发射功率,从而加速了其收敛时间,降低了对系统负载的冲击;而且,在3GPP协议中,要求开环功率控制的控制方差在10dB内就可以接受。
2.上行内环功控
内环功率控制是快速闭环功率控制,在NodeB与UE之间的物理层进行,上行内环功率控制的目的是使基站接收到每个UE信号的比特能量相等。见图3。
图3 上行内环功控
首先,NodeB测量接受到的上行信号的信干比(SIR),并和设置的目标SIR(目标SIR由RNC下发给NodeB)相比较,如果测量SIR小于目标SIR,NodeB在下行的物理信道DPCH中的TPC标识通知UE提高发射功率,反之,通知UE降低发射功率。
因为WCDMA在空中传输以无线帧为单位,每一帧包含有15个时隙,传输时间为10ms,所以,每时隙传输的频率为1500次/秒;而DPCH是在无限帧中的每个时隙中传送,所以其传送的频率为每秒1500次,而且上行内环功控的标识位TPC是包含在DPCH里面,所以,内环功控的时间也是1500次/秒。
3.上行外环功控
上行外环功控是RNC动态地调整内环功控的SIR目标值,其目的是使每条链路的通信质量基本保持在设定值,使接收到数据的BLER满足QoS要求。见图4。
图4 上行外环功控
上行外环功控由RNC执行。RNC测量从NodeB传送来数据的BLER(误块率)并和目标BLER(QoS中的参数,由核心网下发)相比较,如果测量BLER大于目标BLER,RNC重新设置目标TAR(调高TAR)并下发到NodeB;反之,RNC调低TAR并下发到NodeB。外环功率控制的周期一般在一个 TTI(10ms、20ms、40ms、80ms)的量级,即 10~100Hz。
由于无线环境的复杂性,仅根据SIR值进行功率控制并不能真正反映链路的质量。而且,网络的通信质量是通过提供服务中的QoS来衡量,而QoS的表征量为BLER,而非SIR。所以,上行外环功控是根据实际的BLER值来动态调整目标SIR,从而满足Qos质量要求。
4.下行闭环功控
下行闭环功控和上行闭环功控的原理相似。下行内环功率控制由手机控制,目的使手机接收到NodeB信号的比特能量相等,以解决下行功率受限;下行外环功控是由UE的层3控制,通过测量下行数据的BLER值,进而调整UE物理层的目标SIR值,最终达到UE接收到数据的BLER值满足QoS要求。见图5。
图5 下行内环和外环功率控制
先看开环功率控制:它是假定前向路径损耗与反向路径损耗是相似的链路为前提的。将发射功率与接收功率的总和设置为一个常数,通常为-73dB。[移动台根据在整个1.2288MHz频段接收到的总信号能量(就是在导频、寻呼、同步和业务信道的功率,其中含有从服务基站来的信号与相同频率相邻基站的信号总和来)来调整它的发射功率]
例如:如果移动台接收到的信号功率为-85dBm,这时它的发射功率应当为:-73-(-85)=12dBm
闭环功率控制:基站监视从每个移动台接收的功率并命令移动台以固定的步长1dB(0.5 dB、0.25dB)增加或降低功率(不能保持不变)。这个过程每1.25ms一次(每秒钟重复800次)
TD中上行开环功控用于接入上行同步的,而下行功控是用于维持上行同步的