微波EDA网,见证研发工程师的成长!
首页 > 研发问答 > 移动通信 > 通信基础 > 什么是蒙特卡罗分析?

什么是蒙特卡罗分析?

时间:12-02 整理:3721RD 点击:
如题。
什么是蒙特卡罗分析?

蒙特卡罗分析法,是一种容差分析方法,以电子电路为例,在给定元器件的值和容差范围时,对电路进行直流特性,交流小信号特性,瞬态特性分析,得出整个电路的性能的统计规律。

换言之,也就是从一个系统的组成部分的变动范围来分析整个系统的性能、动态范围的统计规律的方法。

总之,是一种利用概率统计理论的仿真方法。通过容差分析,可以断定整个系统是否满足设计要求,从而判断某些元器件是否符合要求。

在电 路 设 计中,实际元件的参数值和标称之间总存在着随机误差,了解和掌握各个元件参数值对电

路性能的影响程度,是电路设计人员所关心的。因此在电路设计时,需考虑容差问题,并进行容差分析。

所谓容差分析是为设定方案确定电路元器件的容许变化范围,即元件的容差。它可分为两类:一是分析

问题,给定元器件、电路及温度的容差,计算电路特性的容差,以验证是否符合设计要求;二是设计问题,

给定电路特性指标的范围,求出所用元器件及电源等的容差,验证设计方案等是否适宜。但容差设计问

题没有惟一解,所以在电路模拟中要解决这一问题,往往通过容差分析问题进行反求,对电路进行容差分

析。

目前,在电子电路的可靠性设计中,蒙特卡罗分析法是进行容差分析的主要方法之一。电子电路中的蒙特卡罗分析法是一种基于概率统计模拟方法,它是在给定电路元器件参数容差的统计分布规律的情况下,用一组组伪随机数求得元器件参数的随机抽样序列,对这些随机抽样的电路进行直流、交流小信号和瞬态分析,并通过多次分析结果估算出电路性能的统计分布规律,如电路性能的中心值、方差,以及电路合格率、成本等

       蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第二次世界大战进研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的首都 Monte Carlo —来命名这种方法,为它蒙上了一层神秘色彩。Monte Carlo方法的基本思想很早以前就被人们所发现和利用。早在17世纪,人们就知道用事件发生的“频率”来决定事件的“概率”。19世纪人们用投针试验的方法来决定圆周率π。本世纪40年代电子计算机的出现,特别是近年来高速电子计算机的出现,使得用数学方法在计算机上大量、快速地模拟这样的试验成为可能。
 
       蒙特卡洛分析,是一种使用随机抽样统计来估算数学函数的计算方法。它需要一个良好的随机数源。这种方法往往包含一些误差,但是随着随机抽取样本数量的增加,结果也会越来越精确。蒙特卡洛方法在纯数学方面一般用来求解一个函数的定积分。它的计算过程如下:先在一个区间或区域内随机抽取一定数量的独立变量样本,然后求相应的独立因变量的平均值,最后用随机样本所在区间(或区域)的长度(或大小)除以所求出的平均值。它与传统的估算定积分的方法有很大差别,传统方法在区间或区域内抽取样本点时是间隔相等、均匀抽取的。蒙特卡洛方法以其在第二次世界大战时被用于原子弹的设计而闻名于世。现在它也已经被应用于多种领域,如超高速公路的运输流量分析、行星演变模型的建立以及股票市场波动的预测。这种方法同样也可应用于集成电路设计、量子力学和通信工程。 在项目管理应用上:蒙特卡洛分析是一种模拟技术主要在制定进度和风险管理中用到 模拟指以不同的活动假设为前提,计算多种项目所需时间。最常用的技术是蒙特卡洛分析,该种分析对每项活动都定义一个结果概率分布,以此为基础计算整个项目的结果概率分布。此外,还可以用逻辑网络进行“如果…怎么办”分析,以模拟各种不同的情况组合,例如推迟某重要配件的交付、延迟具体工程所需时间、或者把外部因素(例如罢工、或政府批准过程发生变化)考虑进来。“如果…怎么办”分析的结果可用于评估进度在恶劣条件下的可行性,并可用于制订应急/应对计划,克服或减轻意外情况所造成的影响。 此外,蒙特卡洛分析还可用于风险定量分析。
 

在3G的规划软件里面,在进行容量规划时,通常会用到MonteCarlo的算法,基于设定的话务模型参数(用户数量、话务类型、终端类型、移动类型、环境等等)进行话务仿真!通常一算就是好几个小时,对计算机的性能要求挺高!  至于具体怎么算,怎么分析的,不是做研究的话,就别太深究了!

呵呵 蒙特卡罗算法在通信中话务模型中用于话务仿真 知道有这玩意儿就成了 至于是怎么弄的就不用管了

      蒙特•卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论(概率论与数理统计是现代数学的一个重要分支。近二十年来,随着计算机的发展以及各种统计软件的开发,概率统计方法在金融、保险、生物、医学、经济、运筹管理和工程技术等领域得到了广泛应用。主要包括:极限理论、随机过程论、数理统计学、概率论方法应用、应用统计学等。极限理论包括强极限理论及弱极限理论;随机过程论包括马氏过程论、鞅论、随机微积分、平稳过程等有关理论。概率论方法应用是一个涉及面十分广泛的领域,包括随机力学、统计物理学、保险学、随机网络、排队论、可靠性理论、随机信号处理等有关方面。应用统计学方法的产生主要来源于实质性学科的研究活动中,例如,最小二乘法与正态分布理论源于天文观察误差分析,相关与回归分析源于生物学研究,主成分分析与因子分析源于教育学与心理学的研究,抽样调查方法源于政府统计调查资料的搜集等等。本研究方向在学习概率论、统计学、随机过程论等基本理论的基础上,致力于概率统计理论和方法同其它学科交叉领域的研究,以及统计学同计算机科学相结合而产生的数据挖掘的研究。此外,金融数学也是本专业的一个主要研究方向。它主要是通过数学建模,理论分析、推导,数值计算以及计算机模拟等理论分析、统计分析和模拟分析,以求研究和分析所涉及的理论问题和实际问题。蒙特•卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。
       蒙特•卡罗方法的基本原理:由概率定义知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,可以认为该事件的发生频率即为其概率。因此,可以先对影响其可靠度的随机变量进行大量的随机抽样,然后把这些抽样值一组一组地代入功能函数式,确定结构是否失效,最后从中求得结构的失效概率。蒙特卡罗法正是基于此思路进行分析的。
设有统计独立的随机变量Xi(i=1,2,3,…,k),其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=g(x1,x2,…,xk)。
       首先根据各随机变量的相应分布,产生N组随机数x1,x2,…,xk值,计算功能函数值Zi=g(x1,x2,…,xk)(i=1,2,…,N),若其中有L组随机数对应的功能函数值Zi≤0,则当N→∞时,根据伯努利大数定理及正态随机变量的特性有:结构失效概率,可靠指标。
       从蒙特卡罗方法的思路可看出,该方法回避了结构可靠度分析中的数学困难,不管状态函数是否非线性、随机变量是否非正态,只要模拟的次数足够多,就可得到一个比较精确的失效概率和可靠度指标。特别在岩土体分析中,变异系数往往较大,与JC法计算的可靠指标相比,结果更为精确,并且由于思路简单易于编制程序。
       在数学中的应用:通常蒙特•卡罗方法通过构造符合一定规则的随机数来解决数学上的各种问题。对于那些由于计算过于复杂而难以得到解析解或者根本没有解析解的问题,蒙特•卡罗方法是一种有效的求出数值解的方法。一般蒙特•卡罗方法在数学中最常见的应用就是蒙特•卡罗积分。 

我是刚涉足通信领域不久,学习了,受用了.

靠,这么深澳啊

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top