解析未来天线技术与5G移动通信
一起的,为了降低成本、节省空间就要做得足够小,所以就需要天线是多频段、宽频段、多波束、MIMO/Massive MIMO,MIMO对天线的隔离度,Massive MIMO对天线的混互耦都有一些特殊的要求。
另外,天线还需要可调谐。第一代天线是靠机械来实现倾角,第三代实现了远程的电调,5G如果能实现自调谐,是非常有吸引力的。
对于移动终端而言,对天线的要求也是小型化、多频段、宽频段、可调谐。虽然这些特性现在也有,但5G的要求会更加苛刻。
除此之外,5G移动通信的天线还面临了一个新的问题——共存。实现Massive MIMO,收发都需要多天线,也就是同频多天线(8天线、16天线...)。这样的多天线系统给终端带来最大的挑战就是共存问题,怎样降低相互之间的影响以耦合,如何增加信道的隔离度....这对5G终端天线提出了新的要求,具体来说会涉及以下三点:
降低相互的影响,特别是不同功能模块,不同频段之间的互相干扰,之前学术界认为不会存在这种情况,但在工业界确实存在这个问题;
去耦,在MIMO系统里面,天线的互耦不仅仅会降低信道的隔离度,还会降低整个系统的辐射效率。另外,我们不能指望完全依赖于高频段毫米波来解决性能上的增长,例如25GHz、28GHz...60GHz都存在系统上的问题;
去相关性,这一点可以从天线和电路设计配合来解决,不过通过电路来解决方案带宽非常受限,很难满足所有频段的带宽。
5G系统的天线技术
这包括单个天线的设计以及系统层面上的技术,系统层面的上文有提到,例如多波束、波束成形、有源天线阵、Massive MIMO等。
从具体天线设计来看,超材料为基础的概念发展出来的技术将会大有裨益,目前超材料已经在3G和4G上取得了成功,例如实现了小型化、低轮廓、高增益和款频段。
第二个是,衬底或者封装集成天线。这些天线主要用在频率比较高的频段,也就是毫米波频段。虽然高频段的天线尺寸很小,但天线本身的损耗非常大,所以在终端上最好把天线和衬底集成或者更小的封装集成。
第三个是电磁透镜。透镜主要应用于高频段,当波长非常小的时候,放上一个介质可以去到聚焦的作用,高频天线体积并不大,但是微波段的波长很长,这就导致透镜很难使用,体积会很大。
第四个是MEMS的应用。在频率很低的时候,MEMS可以用作开关,在手机终端,如果能对天线进行有效的控制、重构,就可以实现一个天线多用。
以电磁透镜为例,这一设计引进了一个概念:在多单元的天线阵列前面放了一个光学透镜(因为在低频上,所以称之为电磁透镜),当光从某一个角度入射后,就会在某一个焦平面上产生斑点,这个斑点上就集中了大量的能力,这就意味着在很小的区域内把整个能力的主要部分接收下来。
当入射方向变化,斑点在焦平面上的位置也会发生变化。如上图,当角度正投射的时候,产生了黑颜色的能量分布,如果是按照某个角度θ入射(红颜色),主要能量就偏离了黑颜色区域。
用这个概念可以区分能量是从哪里来的,入射的方向和能量在阵列上或者焦平面上的位置是一一对应的。反之,在不同的位置激励天线,天线就会辐射不同的方向,这也是一一对应的。如果用多个单元在焦平面上辐射,就可以产生多个载波束的辐射,也就是所谓的波束成形;如果在这些波束之间进行切换,就出现波束扫描的现象;如果这些天线同时用,就可以实现Massive MIMO。这个阵列可以很大,但在每个波束上只要用很少的阵列就可以实现高增益的辐射。
普通的阵列如果有同样大小的口径,每次收到的能量是要所有的单元必须在这个区域内接收能量,如果在很大区域只放一个单元收到的能量只是非常小的一部分;和普通阵列不同的是,同样的口径在没有任何损耗的情况下,只用很少的单元就可以接收到所有的能量,不同的角度进来,这些能量可以被不同的地方同时接收。
这大大简化了整个系统,如果每次工作只有一个方向的时候,只要一个局部的天线工作就可以,这就减少了同时工作天线的个数。而子阵的概念不同,它是让局部多天线构成子阵,这时候通道数是随着子阵单元数的增加而减少的。例如10×10的阵列,如果用5×5变成子阵的话,那么就变成了只有四个独立的通道,整个信道数也就减少了。
上图右侧显示的是在基带上算出来透镜对系统的影响,水平方向是天线个数,假设水平方向上一个线阵有20个单元,用透镜的情况下,只用5个单元去接受被聚焦后的能量比不用透镜全部20个单元都用上的效果要更好,前者的通信质量更高以及成本、功耗更低。即便是最糟糕的情况,波从所有方向入射,这20个单元都用上和后者的效果也是一样的。
- 解读5G八大关键技术(07-02)
- 作为延续性技术,5G到底能解决啥问题?(12-10)
- 第五代移动通信系统概况--面向IMT-2020(5G)的多天线技术(08-27)
- 利用5G WiFi波束成形和LDPC性能技术提高无线连接(10-06)
- 不一样的5G!布建架构转向高密度小基站组网(08-24)
- 解析通讯技术:3G、4G、5G 背后的科学意义(下)(11-03)