波束赋形技术原理及发展方向
了解天线与目标用户间信道的同时是否需要了解天线与其他非目标用户(干扰源)之间的信道参量等。通过预定义的参考信号进行信道估计是一种常用的方法,不同的算法对是否需要参考信号以及对参考信号长度等参数会有不同的要求。⑶算法对系统的其他要求:主要包括达到一定性能需要的天线单元数目、是否有对传输协议的额外要求(如是否需要反馈链路)、是否对输入信号有一定的要求(如是否为恒包络的调制信号)等。
3. 波束赋形技术的现状及发展方向
波束赋形技术发展过程中,出现了大量的具体技术,其命名、分类并不完全统一,加之近年来与其他技术(如联合检测、功率控制等)的结合乃至融合,使得相关的具体技术更显纷繁复杂。通常可以依据的分类有,根据应用场合的不同将波束赋形技术分为上行链路波束赋形和下行链路波束赋形;根据其所使用的信道特征参量的种类,可分为使用信道空域参量的技术和使用信道空时域参量的技术;根据不同的波束赋形技术对于问题采用的描述方法,可分为优化类和自适应滤波器类;根据波束赋形技术计算使用的方法可分为线性算法和非线性算法。
对于上行链路,由于可以获得可靠的信道实时估计,因此可以采用信道的空时域参量进行波束赋形,以提高上行链路性能。针对移动无线通信系统,尤其是CDMA系统的实际情况,上行链路的波束赋形可以结合信号检测,实现多用户的联合检测。但是应用这一方法存在以下两个问题:算法要求测量所有信道的空时域参数,且测量要求高(除了盲检测算法,大部分算法需要使用训练序列,并要求在获得同步以后进行测量);计算过于复杂难以实现,尤其是针对多用户的方案。实际可采用的方法有:采用性能次优但较为简单的方法;设计便于并行运算的结构,以硬件代价满足运算时间方面的要求;或者结合两种方法。其中,通过有限度降低算法性能提高算法可实现性的具体方法包括:减少计算需要的参量;减少计算的维数(如使用训练序列进行初始化,或者分解全局优化问题变为互不相关的局部优化问题的叠加);选择计算复杂度较低的计算方法等。在保证性能的前提下进一步降低系统结构的复杂度主要依赖于使用结构较为简单的处理单元,根据传统的均衡和检测领域的研究,非线性的系统结构和算法可以大大降低系统结构的复杂度,目前对判决反馈结构、神经网络技术等在波束赋形领域的应用已有初步研究。
对于下行链路,由于条件限制很难在下行链路实现对于信道的可靠实时估计。对于TDD模式的系统,在上下行信道间隔时隙很小的条件下,可以近似认为信道未发生变化,从而可以在下行链路使用由上行数据获得的信道空时域参数的估计值,甚至可以直接使用上行波束赋形的数据。但是对于FDD系统,则一般无法满足上下行信道频率间隔足够小的要求使得两者的变化强相关,因此如果不使用反馈回路获取移动站的测量数据,仅可根据上行数据获得一些与频率变化无关或者弱相关的信道参量,这包括信道的空域参量以及空时域参量的平均值等。其中使用空时域参量平均估计值的方法原理上同使用空时域信道参量的方法并无区别,只是由于缺乏对于信道状况的实时跟踪,性能会有所下降。而仅依赖信道空域参量的算法则符合波束赋形的传统含义,即使基站实现下行指向性发射。
仅依赖信道空域参量的算法需要了解目标移动站与基站的相对位置,为了抑制同信道用户间的干扰可能还需要了解同信道移动站与基站的相对位置。这些信息可以由上行信道数据得到,即根据上行数据对波达方向进行估计,因此这种算法又可称为基于DoA估计的算法,由于使用的信息可以认为与上下行信道载频无关,因此可以适用于TDD或者FDD模式的系统。这类算法的主要局限在于较大的DoA估计误差以及天线单元数限制了算法的性能,因此在实际应用时系统性能并不理想。一般,为了减小天线增益凹陷的指向偏差,必须配合使用凹陷点展宽(Null Broadening)技术,即在计算所得的凹陷点附近形成凹陷区,确保对其他用户的干扰降低到最小的程度。
目前,由于上行波束赋形技术的发展,下行链路性能成为提高系统性能的瓶颈,因此迫切需要有效的方法。在可以获得可靠的空时域参量的条件下(TDD模式的系统,或者使用反馈链路的系统),可以应用空时处理方法,但是在具体的表述、算法的实现等方面仍需进一步的系统研究。如果无法获得可靠的空时域参量(不采用反馈链路的FDD模式的系统),那么基于DoA估计的算法应该是最终的解决方案,但是目前的估计精度很难满足实际系统的需要,必须发展对估计误差不敏感的波束赋形算法。
相关技术
波束赋形
波束赋形 相关文章:
- 波束赋形-智能化的发射技术(04-11)
- TD-LTE双流波束赋形天线技术创新(10-06)
- LTE双流波束赋形技术研究(10-30)
- 波束赋形技术:显著提升无线传输效果(01-15)
- 基于奇异值分解的TD-HSPA+系统赋形算法研究(05-04)
- 提升Wi-Fi传输效果的技术:波束赋形(01-19)