微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > LTE标准化及其演进路线[图]

LTE标准化及其演进路线[图]

时间:02-09 来源:邮电设计技术 点击:

合高速和低速移动应用场景。

3 LTE与HSPA+的性能比较

HSPA+作为HSPA技术的直接演进,在R7版本中引入,与LTE共同经历了R8、R9版本的发展。HSPA+的出发点在于对投资成本及平滑演进的考虑,因此具有一定的局限性,这种演进只能算是一种技术“改良”。与之相比,LTE作为着眼于4G的主流演进技术,可以称得上是一种技术“革命”。 LTE与HSPA+的性能差异体现在吞吐量、时延、频谱效率等方面。

3.1 吞吐量

吞吐量是指单位时间内成功地传送数据的数量,是衡量无线通信系统性能的重要指标。影响吞吐量的因素包括带宽、调制方式、信号质量、信道衰落、噪声干扰、调度机制等。

考虑到向后兼容和升级成本,HSPA+的载波带宽沿用了WCDMA以来的5MHz。采用2×2 MIMO配置和16QAM调制方式时,HSPA+峰值速率为28Mbit/s,采用2×2 MIMO配置和64QAM调制方式时,峰值速率为42Mbit/s。而LTE系统可以支持20MHz的带宽,LTE-A可以支持100MHz的带宽。更大的带宽使LTE系统拥有比HSPA+更大的传输容量。

LTE系统下行支持SU-MIMO、MU-MIMO和基于参考信号的波束赋型等多种多天线阵列技术,支持8种不同的MIMO和波束成型模式,并且可以同时支持多个数据流的传送。LTE中每个用户下行可支持2个流,而LTE-A中下行可支持8个流,还可以采用4×4、8×8等类型的收发方式,而目前所定义的HSPA系统只支持发射分集和2×2 MIMO。MIMO技术应用的丰富性和多样性使LTE的吞吐量更优。

LTE使用自然均衡器,如果RMS时延扩展小于CP长度,就不会产生系统间干扰。而HSPA+使用Rake接收机,不能完全消除系统间干扰,因此多径环境下性能会下降。LTE系统中,下行采用MLD+SIC接收机,上行采用SIC接收机,这些先进的接收机技术能够进一步降低干扰。

另外,HSPA+不采用频率选择性调度,只在时域使用机会性调度。而LTE得益于频率选择性调度机制,在时域和频域都可以进行机会性调度,其容量增益约为10%~15%。对于PS域的典型语音应用——VoIP来说,HSPA+中不再使用HS-SCCH,下行的容量得到改善,但上行仍然是限制因素。而LTE则采用半持续性调度和TTI绑定技术来降低控制信道开销,极大地改善了VoIP容量。

LTE和HSPA+的理论最大传输速率如图2所示。从图2中可以直观地看出,当采用最大带宽配置时,LTE的传输性能远远超过HSPA+,其吞吐量约为后者的8倍。

3.2 时延

时延是数据在网络中传送所需要的环回时间。无线通信技术发展至今,每次技术演进都在努力降低时延。相比于 EDGE的150ms,HSDPA的时延小于70ms。而后HSUPA、HSPA+和LTE的时延则更低。HSPA+为了更好的兼容性,基本是沿袭了HSPA的网络架构,而在LTE系统中,则有了全新的变化。首先是无线接入系统只有一种网络结点,那就是eNodeB。eNodeB替代了3G网络中的NodeB和RNC,主管无线接入功能。eNodeB和eNodeB之间引入了X2接口,一部分业务流量可直接在基站之间处理,而不用再发往核心网络,大大提高了数据处理效率。LTE接入网的架构演进如图3所示。

在单元化接入网网元的同时,LTE的核心网节点也进行了简化,通过网络扁平化进一步提升网络性能。采用LTE网络架构的最大好处就是通过减少节点减少时延,满足LTE实时业务的低时延要求,另外减少网络实体,也符合节省成本的需求。

图4显示了各系统的时延对比。设备商的性能各不相同,所以每种系统的时延都用最大值和最小值的区间来表示。可以看出,LTE的时延均小于20ms,满足系统设计要求,相对于HSPA+也有一定的优势。

3.3 频谱效率

频谱效率是指单位频带所支持的数据速率或者用户数。在频段、频谱数量、小区位置等因素不变的情况下,频谱效率意味着一定负荷条件下所支持的用户数较多,或者说在用户数目相同的条件下,单个用户的吞吐量较高。LTE和HSPA+的频谱效率差异是其各自采用的载波调制技术差异决定的。

传统的多载波通信系统中,为了避免相互干扰,整个系统频带被划分为若干个分离的子载波。各载波之间有一定的保护间隔,频带没有重叠,接收端通过滤波器把各个子载波分离之后接收所需信息。设置保护频带虽然可以避免各子载波间的互相干扰,但却需要以牺牲频率效率为代价。而OFDM技术完全解决了子载波干扰的问题。

OFDM的基带信号可以表示为

式中:
    i——子载波
    d——系统输入

T——信号周期

单路k子载波的解调结果为

对于除k外的其他子载波来说,由于在积分间隔内,频率偏差是1/T的整数倍,所以积分结果为0。因此相邻子载波虽然在频域上重叠,但不会产生干扰。

从图5中可以看出,由于OFDM技术的频率特性,各子载波间的频率

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top