微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > linux 设备驱动编程

linux 设备驱动编程

时间:03-24 来源: 点击:

4.2 对I/O端口空间的操作

  基于I/O Region的操作函数__XXX_region(),Linux在头文件include/linux/ioport.h中定义了三个对I/O端口空间进行操作的宏:①request_region()宏,请求在I/O端口空间中分配指定范围的I/O端口资源。②check_region()宏,检查I/O端口空间中的指定I/O端口资源是否已被占用。③release_region()宏,释放I/O端口空间中的指定I/O端口资源。这三个宏的定义如下:


#define request_region(start,n,name)
__request_region(&ioport_resource, (start), (n), (name))
#define check_region(start,n)
__check_region(&ioport_resource, (start), (n))
#define release_region(start,n)
__release_region(&ioport_resource, (start), (n))



  其中,宏参数start指定I/O端口资源的起始物理地址(是I/O端口空间中的物理地址),宏参数n指定I/O端口资源的大小。

  4.3 对I/O内存资源的操作

  基于I/O Region的操作函数__XXX_region(),Linux在头文件include/linux/ioport.h中定义了三个对I/O内存资源进行操作的宏:①request_mem_region()宏,请求分配指定的I/O内存资源。②check_ mem_region()宏,检查指定的I/O内存资源是否已被占用。③release_ mem_region()宏,释放指定的I/O内存资源。这三个宏的定义如下:


#define request_mem_region(start,n,name)
  __request_region(&iomem_resource, (start), (n), (name))
#define check_mem_region(start,n)
__check_region(&iomem_resource, (start), (n))
#define release_mem_region(start,n)
__release_region(&iomem_resource, (start), (n))



  其中,参数start是I/O内存资源的起始物理地址(是CPU的RAM物理地址空间中的物理地址),参数n指定I/O内存资源的大小。

  4.4 对/proc/ioports和/proc/iomem的支持

  Linux在ioport.h头文件中定义了两个宏:

  get_ioport_list()和get_iomem_list(),分别用来实现/proc/ioports文件和/proc/iomem文件。其定义如下:


#define get_ioport_list(buf) get_resource_list(&ioport_resource, buf, PAGE_SIZE)
#define get_mem_list(buf) get_resource_list(&iomem_resource, buf, PAGE_SIZE)

5 .访问I/O端口空间

  在驱动程序请求了I/O端口空间中的端口资源后,它就可以通过CPU的IO指定来读写这些I/O端口了。在读写I/O端口时要注意的一点就是,大多数平台都区分8位、16位和32位的端口,也即要注意I/O端口的宽度。

  Linux在include/asm/io.h头文件(对于i386平台就是include/asm-i386/io.h)中定义了一系列读写不同宽度I/O端口的宏函数。如下所示:

  ⑴读写8位宽的I/O端口


  unsigned char inb(unsigned port);
  void outb(unsigned char value,unsigned port);



  其中,port参数指定I/O端口空间中的端口地址。在大多数平台上(如x86)它都是unsigned short类型的,其它的一些平台上则是unsigned int类型的。显然,端口地址的类型是由I/O端口空间的大小来决定的。

  ⑵读写16位宽的I/O端口


  unsigned short inw(unsigned port);
  void outw(unsigned short value,unsigned port);



  ⑶读写32位宽的I/O端口


  unsigned int inl(unsigned port);
  void outl(unsigned int value,unsigned port);



  5.1 对I/O端口的字符串操作

  除了上述这些"单发"(single-shot)的I/O操作外,某些CPU也支持对某个I/O端口进行连续的读写操作,也即对单个I/O端口读或写一系列字节、字或32位整数,这就是所谓的"字符串I/O指令"(String Instruction)。这种指令在速度上显然要比用循环来实现同样的功能要快得多。

  Linux同样在io.h文件中定义了字符串I/O读写函数:

  ⑴8位宽的字符串I/O操作


  void insb(unsigned port,void * addr,unsigned long count);
  void outsb(unsigned port ,void * addr,unsigned long count);



  ⑵16位宽的字符串I/O操作


  void insw(unsigned port,void * addr,unsigned long count);
  void outsw(unsigned port ,void * addr,unsigned long count);



  ⑶32位宽的字符串I/O操作


  void insl(unsigned port,void * addr,unsigned long count);
  void outsl(unsigned port ,void * addr,unsigned long count);



  5.2 Pausing I/O


  在一些平台上(典型地如X86),对于老式总线(如ISA)上的慢速外设来说,如果CPU读写其I/O端口的速度太快,那就可能会发生丢失数据的现象。对于这个问题的解决方法就是在两次连续的I/O操作之间插入一段微小的时延,以便等待慢速外设。这就是所谓的"Pausing I/O"。

  对于Pausing I/O,Linux也在io.h头文件中定义了它的I/O读写函数,而且都以XXX_p命名,比如:inb_p()、outb_p()等等。下面我们就以out_p()为例进行分析。

  将io.h中的宏定义__OUT(b,"b"char)展开后可得如下定义:


extern inline void outb(unsigned char value, unsigned short port) {
__asm__ __volatile__ ("outb %" "b " "0,%" "w" "1"
: : "a" (value), "Nd" (port));
}

extern inline void outb_p(unsigned char value, unsigned short port) {
__asm__ __volatile__ ("outb %" "b " "0,%" "w" "1"
__FULL_SLOW_DOWN_IO
: : "a" (value), "Nd" (port));
}



  可以看出,outb_p()函数的实现中被插入了宏__FULL_SLOWN_DOWN_IO,以实现微小的延时。宏__FULL_SLOWN_DOWN_IO在头文件io.h中一开始就被定义:


#ifdef SLOW_IO_BY_JUMPING
#define __SLOW_DOWN_IO "
jmp 1f
1: jmp 1f
1:"
#else
#define __SLOW_DOWN_IO "
outb %%al,$0x80"
#endif

#ifdef REALLY_SLOW_IO
#define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO
  __SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO
#else
#define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO
#endif



  显然,__FULL_SLOW_DOWN_IO就是一个或四个__SLOW_DOWN_IO(根据是否定义了宏REALLY_SLOW_IO来决定),而宏__SLOW_DOWN_IO则被定义成毫无意义的跳转语句或写端口0x80的操作(根据是否定义了宏SLOW_IO_BY_JUMPING来决定)。

6 .访问I/O内存资源

  尽管I/O端口空间曾一度在x86平台上被广泛使用,但是由于它非常小,因此大多数现代总线的设备都以内存映射方式(Memory-mapped)来映射它的I/O端口(指I/O寄存器)和外设内存。基于内存映射方式的I/O端口(指I/O寄存器)和外设内存可以通称为"I/O内存"资源(I/O Memory)。因为这两者在硬件实现上的差异对于软件来说是完全透明的,所以驱动程序开发人员可以将内存映射方式的I/O端口和外设内存统一看作是"I/O内存"资源。

  从前几节的阐述我们知道,I/O内存资源是在CPU的单一内存物理地址空间内进行编址的,也即它和系统RAM同处在一个物理地址空间内。因此通过CPU的访内指令就可以访问I/O内存资源。

  一般来说,在系统运行时,外设的I/O内存资源的物理地址是已知的,这可以通过系统固件(如BIOS)在启动时分配得到,或者通过设备的硬连线(hardwired)得到。比如,PCI卡的I/O内存资源的物理地址就是在系统启动时由PCI BIOS分配并写到PCI卡的配置空间中的BAR中的。而ISA卡的I/O内存资源的物理地址则是通过设备硬连线映射到640KB-1MB范围之内的。但是CPU通常并没有为这些已知的外设I/O内存资源的物理地址预定义虚拟地址范围,因为它们是在系统启动后才已知的(某种意义上讲是动态的),所以驱动程序并不能直接通过物理地址访问I/O内存资源,而必须将它们映射到核心虚地址空间内(通过页表),然后才能根据映射所得到的核心虚地址范围,通过访内指令访问这些I/O内存资源。

  

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top