微波EDA网,见证研发工程师的成长!
首页 > 天线设计 > 天线设计文库 > 平板天线的设计原理

平板天线的设计原理

时间:11-04 来源:mwrf 点击:

主接收方向是垂直于天线的法线方向。如图五。

三、平板天线中半波振子单元的几种等效辐射单元

在平板天线中,采用阵列式天线,而它的基本单元是半波振子单元天线。而这种基本单元,我们又可以称其为天线的辐射单元。在Ku波段,频率范围如果是11.7u-12.75GHz,那么对应的波长在2.353-2.564cm之间。1/2波长为1.177-1.282cm,取其平均值,半个波长为1.23cm在实际使用中,由于还要考虑天线有个缩短因素,因此半波振子单元的实际长度还要乘以缩短系数0.85-0.9,因此实际半波振子单元长度为1.0455-1.107cm,取其平均值便是1.076cm。

上面我们分析了平板天线中的基本单元或称辐射单元是半波振子天线,但由于它仅能接收线极化波且形式单一,尺寸也不能缩小。所以在实际使用中,人们常用其它各种等效形式的辐射元来替代它。这样生产出来的平板天线不仅面积、尺寸减少些,而且有的可以接收圆极化波。现让我们认识一下这些等效辐射元。

1、 片状形:如图六中1,依靠上、下电极组成的极片作为辐射单元。片状图形种类较多,图七为片状形一例。此二例均为圆极化辐射单元。
2、 共用面电极形:如图六中2,依靠电极与周围的接地线构成。同平面电极在其相邻的缝隙处产生电场,来辐射电波。
3、 糟缝形:如图六中3,由上下两块金属板形成封闭波导,而上板开有许多糟缝,将空间电波导入并在内部汇集由波导引出。
4、 线状形:如图六中4,没有单元振子,而依靠传输线上各不同位置的电流分布产生同相辐射。因此将线作为矩形曲折,变拆部分为传输线,平直部分为辐射振子。

四、 辐射单元间的馈电

平板天线中的辐射单元的馈电是一个难度较高的技术性问题,必须保证各辐射单元间是同相馈电,才能使平板天线有较高的增益和较强的方向性。各辐射单元依靠微带馈线来馈电,馈电线路要解决电路阻抗匹配和相位的联接问题。

由于各辐射单元振子是多个联接使用,因此阻抗是不断地并联。每并联一次阻抗便降低一半,所以馈线的特性阻抗也需要改变与之匹配。微带传输线是做在同一基板上,不可能用改变带间距离的方法来改变阻抗,所以只有改变微带宽度来控制阻抗变化。为了使不同线段间匹配,线上还做有许多λ/4阻抗变换器。

为了保证处于不同部位的单元振子都能得到同相位的馈电,因此布线时,各单元振子间的微带线并非一样长度。另外,有时为了增大天线抗雨、雪能力,使电波波束不垂直于平板天线的平面,而故意上斜15°-20°。这样天线面安装对可以垂直些,与墙面接近平行。这一点有些类似Ku波段常用的偏馈天线,在安装时,天线反射面相对于正馈天线而言要向下斜一个角度一样。平板天线在制作馈线时,就故意让上、下相邻的两排振子间馈线长度不等,电流传输后相位相差一个角度θ。这样电波只有倾斜地射向平板时,各振子电流相位才能同相,从而接收到信号。如图八所示。

由此,我们看到可以通过控制平板天线各单元振子即辐射单元之间馈电相位来改变波束与平板天线的夹角,就可以实行方位角和仰角的电气调整。这是平板天线的一大特点,也是平板天线的一大技术难点,这也是抛物面天线无法比拟的。但调整的角度不能太大,否则天线的有效投影面积将减少,降低效率与增益。

五、 平板天线与高频头的联接

由于平板天线各辐射单元是靠馈线联接的,电波在振子处已变为感应电流,各馈线集中汇总后可以直接以电流形式传输给高频头中下变频器。既不需要馈源,也减少了由电波的电场形式转换为电流形式的损失,有利于信号的接收。

此时的高频头,可以是集中参数式,也可以是分布参数微带式。而且还可以把高频头直接装在平板天线后面,或者通过微带式高频头直接做在平板天线里面,使得天线-高频头一体化的新型结构,既美观也改善了可靠性,真是一举双得。

六、 平板天线的技术关键

平板天线由于采用了印刷板的制造工艺,生产性比机械加工便利的多,调节方向又可以从电气上解决,并能做成平板天线与高频头一体化,这是平板天线的优势。但平板天线要达到预期的电气性能也并非易事,关键在于损耗问题。

1、 馈线传输损耗:平板天线中,不仅半波振子单元天线工作在Ku波段,而且馈给各振子单元天线的传输馈线也工作在Ku波段,频率均在12GHz左右。这么高的频率,馈线的损耗肯定很大。
2、 馈线辐射影响:平板天线的所有馈线,不仅有损耗,而且有辐射。由于馈线的辐射,干扰了平板天线原来设计的整体方向性图。
3、 平板天线中,印在印刷电路板中的微带传输线是依靠双面印刷板的两面金属箔组成的平行双线,其电磁场存在于介于两金属箔间介质板中。由于介质是工作在Ku波段,损耗都较大。即使采用低耗介质的印刷板,损耗仍然存在,所以解决高频介质损耗是平板天线的一大难题。目前已有低耗介质产品,
4、 匹配损失,每付平板天线中,至少也有数百个辐射单元,把它们都联接起来,并且都达到匹配,这不是件容易做到的事。辐射单元越多,越难匹配。不匹配联接,势必增加损耗。
另外,如何提高平板天线的效率,是有待解决的另一技术关键。它涉及到新型介质材料的开发,新型馈电线结构的设计与开发,Ku波段12GHz微波测量技术及测量仪器的开发与实用等等。

栏目分类

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top