微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > FDTD参数选择估计程序

FDTD参数选择估计程序

时间:08-23 来源:互联网 点击:

tep for numerical stability

dtmax = 6/7*sqrt(epmin*mumin/(1/dx^2 + 1/dz^2));

子函数2

function [dxmax,wlmin,fmax] = finddx(epmax,mumax,srcpulse,t,thres);

% finddx.m

%

% This function finds the maximum spatial discretization that can be used in the

% 2-D FDTD modeling codes TM_model2d.m and TE_model2d.m, such that numerical

% dispersion is avoided. Second-order accurate time and fourth-order-accurate

% spatial derivatives are assumed (i.e., O(2,4)). Consequently, 5 field points

% per minimum wavelength are required.

%

% Note: The dx value obtained with this program is needed to compute the maximum

% time step (dt) that can be used to avoid numerical instability. However, the

% time vector and source pulse are required in this code to determine the highest

% frequency component in the source pulse. For this program, make sure to use a fine

% temporal discretization for the source pulse, such that no frequency components

% present in the pulse are aliased.

%

% Syntax: [dx,wlmin,fmax] = finddx(epmax,mumax,srcpulse,t,thres)

%

% where dxmax = maximum spatial discretization possible (m)

% wlmin = minimum wavelength in the model (m)

% fmax = maximum frequency contained in source pulse (Hz)

% epmax = maximum relative dielectric permittivity in grid

% mumax = maximum relative magnetic permeability in grid

% srcpulse = source pulse for FDTD simulation

% t = associated time vector (s)

% thres = threshold to determine maximum frequency in source pulse

% (default = 0.02)

%

% by James Irving

% July 2005

if nargin==4; thres=0.02; end

% convert relative permittivity and permeability to true values

mu0 = 1.2566370614e-6;

ep0 = 8.8541878176e-12;

epmax = epmax*ep0;

mumax = mumax*mu0;

% compute amplitude spectrum of source pulse and corresponding frequency vector

n = 2^nextpow2(length(srcpulse));

W = abs(fftshift(fft(srcpulse,n)));

W = W./max(W);

fn = 0.5/(t(2)-t(1));

df = 2.*fn/n;

f = -fn:df:fn-df;

W = W(n/2+1:end);

f = f(n/2+1:end);

% determine the maximum allowable spatial disretization

% (5 grid points per minimum wavelength are needed to avoid dispersion)

fmax = f(max(find(W>=thres)));

wlmin = 1/(fmax*sqrt(epmax*mumax));

dxmax = wlmin/5;

子函数3

function [excitation]=gprmaxso(type,amp,freq,dt,total_time);

% GPRMAXSO Computes the excitation function used in 'GprMax2D/3D'

% simulators for ground probing radar.

%

% [excitation] = gprmaxso('source_type',Amplitude,frequency,Time_step,Time_window)

% source_type can be 'cont_sine', 'gaussian', 'ricker'

% Amplitude is the amplitude of the source

% frequency is the frequency of the source in Hz

% Time_step is the time step in seconds

% Time_window is the total simulated time in seconds

%

% excitation is a vector which contains the excitation function.

% If you type plot(excitation) Matlab will plot it.

% You can use the signal processing capabilities of Matlab

% to get a Spectrum etc.

%

% Copyright: Antonis Giannopoulos, 2002 This file can be distributed freely.

RAMPD=0.25;

if(nargin 5)

error('GPRMAXSO requires all five arguments ');

end;

if(isstr(type)~=1)

error('First argument should be a source type');

end;

if(freq==0)

error(['Frequency is zero']);

end;

iter=total_time/dt;

time=0;

if(strcmp(type,'ricker')==1)

rickth=2.0*pi*pi*freq*freq;

rickper=1.0/freq;

ricksc=sqrt(exp(1.0)/(2.0*rickth));

i=1;

while(time=total_time)

delay=(time-rickper);

temp=exp(-rickth*delay*delay);

excitation(i)=ricksc*temp*(-2.0)*rickth*delay;

time=time+dt;

i=i+1;

end;

end;

if(strcmp(type,'gaussian')==1)

rickper=1.0/freq;

rickth=2.0*pi*pi*freq*freq;

i=1;

while(time=total_time)

delay=(time-rickper);

excitation(i)=exp((-rickth)*delay*delay);

time=time+dt;

i=i+1;

end;

end;

if(strcmp(type,'cont_sine')==1)

i=1;

while(time=total_time)

ramp=time

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top