Linux 2.6内核的精彩世界
模块子系统 - 设备驱动程序
在 Linux 2.6的开发历程中,模块子系统是另一有重大改进的部分。许多代码被重写,以提高稳定性,并使系统更加透明。除了这些明显的表层的变化之外,还有更多背后的内核如何看待以及使用模块的改变。
首先,Linux 2.6中内核驱动程序最显而易见的(虽然并没有太大作用)的变化是文件扩展名改变了。".ko"(kernel object,内核目标文件)取代了".o"(这是一目标文件的常见扩展名,通常在程序编译期间,链接生成可执行应用程序之前创建)。与其说这使得模块并不是真正的中间文件这一点更为清楚,还不如说这仅仅是一个装饰性(cosmetic)的改动。
完完全全实质性的改进在于消除存在于很多内核版本中的竞态的多方面工作。问题的关键在于,如果卸载发生在模块检查并确认没有其它的设备正在使用它之后,使用一个正在被卸载的模块来启动设备是有可能的。新的内核模块代码应使得这一条件更难被触发。更进一步,现在简单地完全禁止模块卸载也是有可能的。
更加透明是新的模块子系统另一特性。在此之前,几乎所有的 Linux版本中,模块是足够智能的,它们可以通过扫描总线寻找它识别(recognized)的设备ID号,检测到它所能够支持的设备(比如PCI,ISA PnP以及PC卡)。Linux 2.6标准化了这种支持,使之对内核来说外部化,外部程序以及模块加载器判断一个特定的模块可以支持哪些设备将更为容易。这将允许各种硬件管理程序(比如 Redhat的kudzu)对硬件作出智能化的判断,即使他们本身对自己所处理的硬件设备并不熟悉。如果你的知识超越了当前版本的驱动程序,你可以(通过新的 sys文件系统中的一个接口)强制一个驱动程序工作于某一特定的设备,即使驱动程序并不知道自己可以支持该设备。
其他改进
除了上述的许多改变之外,还有很多其他可以提升系统性能的普遍性的改变。这其中包括更多的去除了"Big kernel Lock"(早期Linux用于支持SMP系统时所采用的非细粒度锁),以及针对文件系统预读、回写和小文件操作的优化等。
Linux 2.6还解决了一个更为深刻的稳定性问题:内核将不会分配多于系统中RAM(加swap)数量的内存。此前,Linux在一些即使系统内存耗尽的情况下,仍然允许malloc操作分配内存成功。过量分配(overcommitment)逻辑得到修改,使得这种情况现在不再可能出现。(当然,如果你耗尽了系统的RAM,即使没有超越最大可用数量--你需要担心更更严重的问题。)
Linux总是一个开放标准的支持者。内核内部的大改变之一就是Linux的线程框架被重写,以使NPTL(Native POSIX Thread Library)可以运行于其上。对于运行负荷繁重的线程应用的Pentium Pro以及更先进的处理器而言,这是一个主要的性能提升;它也是企业级应用中的很多高端系统一直以来所期待的。(实际上,RedHat已经将它向后移植到了Linux 2.4,从RedHat 9.0中开始包含)线程框架的改变包含LInux线程空间中的许多新的概念,包括线程组、线程各自的本地存储区、POSIX风格信号以及其他改变。主要的缺点之一是依赖于老式的Linux-isms而没有遵循POSIX标准的应用程序(比如Sun Java)将不能运行在支持新式线程的系统之上。鉴于使用新的线程模型利远大于弊,很明显,新的内核发布不久,最为重要的那些应用都将会支持这个改变。
最后,2.6可以支持编译时关闭内核对存储交换(swap)的支持,尽管对于绝大多数Linux之上的应用而言,没有直接的益处。这使得Linux可以在相对小的内存足迹(footprint)内运行,对于不大可能使用交换设备的嵌入式系统可能也是有益的。
统一设备模型
作为操作系统中的一个相对独立的组件,设备模型对于那些被设计运行于用于多种硬件之上的操作系统而言是至关重要的。简单地说,设备模型是内核中的基础设施,用于检测和决定系统中所有可选模块的资源使用。所有的操作系统(包括各版本的Linux)都固有一些设备的概念。老版本的Linux(2.2或更早)仅使用一种直接的方法操作设备。系统为不同种类的硬件总线提供驱动程序,各式各样的设备驱动程序知道如何探测它们所支持的设备总线以寻找对应的硬件设备。这种系统非常分散,各种各样的总线提供许多互不兼容的API,用于处理各种不同的操作。Linux 2.4通过使用一组通用接口将PCI,PC卡以及ISA PnP 整合到一个单一的设备结构中,完成了构建统一设备模型的第一步。Linux 2.6更进一步地推进了这方面的努力,力求在整个系统的范围内,内核以一种新的统一的视角看待它所依赖的硬件。
内核对象抽象
新设备模型基础的核心是一个所有底层设备类型都需使用的新的面向对象的接口。这个内核设备对象结构(称为"kobject")包含用于引用计数和操作子设备的所有接口。底层设备(例如系统总线)利用这一公共接口层,向内核以及用户空间提供统一的系统视图。现在,所有这些都被放在了中心位置,这使得Linux可以使用这些信息作许多有用的事。
在内核中完整地保存这些新的信息,使得Linux可以更好的支持那些需要有深入的硬件知识的系统。一个明显的例子就是电源管理。近几年新出现的电源管理标准是ACPI。ACPI,即高级电源配置管理界面,最早是在Linux 2.4中有支持。不同于APM(高级电源管理),拥有这种接口的系统在改变电源状态时需要分别通知每一个兼容的设备。新的内核系统允许子系统跟踪需要进行电源状态转换的设备。另一个例子是支持热插拔的总线。机器启动后依然可以添加设备的能力在现在看来显得很普通,但Linux直到2.2版本才提供相关支持。到了Linux 2.4,这种支持得到进一步的加强,范围也扩大到可热插拔的PCI、PC卡、USB以及Firewire设备。通过从根本上消除热插拔设备和传统设备的差异,新内核的集中化设备系统扩展了这一支持。当你启动计算机的时候,设备检测例程将"插入"系统中的设备。无论在系统启动时,或是启动以后,系统发现系统中的某个设备时,都会相应创建一个相同的内核对象,这就使得处理可插拔设备的底层结构简单化了。
嵌入式新闻 嵌入式资料 嵌入式培训 嵌入式linux 嵌入式系统 嵌入式开发 嵌入式 相关文章:
- 煤矿井下综合自动化系统中的应用(04-06)
- 软件Overlay:程序编写与调试(01-20)
- USB数据通信接□模块的程序设计(10-17)
- 东江产业园:力争2017年产值达千亿(09-30)
- 硅谷数模的SlimPort扩大了Nexus7的显示屏选择(08-01)
- Lonworks控制网络技术在城市排水泵站自动化中的应用(06-06)