串行ata技术详解及其应用介绍
早期的外部串行ATA产品
术规格说明书在市场露面。不过,许多这些早期产品使用一个内部SATA连接,它不提供所需要的、上面所说的为新外部电缆与连接器而设计的全部属性。结果,它们预计将很快地转向被认可的新设计。甚至,更为不受欢迎的是某些使用其他连接器技术的早期外部串行ATA产品,例如使用1394或者DB9(标准监视器互连)电缆与连接器等。这些产品不是为适用高速串行ATA信号而设计的,并且在用户认为“一个不同类型的信号被输出到连接器之上”时会引起许多混乱。想象一下,将一个昂贵的便携式数字摄/放像一体机连接到一个实际上由串行ATA控制器驱动的1394连接器时,将会发生什么样的问题!随着新技术规格说明书的发布,这种混乱状况将得到彻底改变,同时,兼容的、用户友好的外部串行ATA设备将会得到迅速增长。
电气信号需求
上面得出的功能需求之一就是配有一根长达2米的较长电缆,用于外部应用。由于最初的串行ATA技术规格说明书是为内部1米电缆而设计的,它没有提供充分的设计裕量来驱动更长的电缆。串行ATA技术规格说明书规定了必须从一个串行ATA主机或者设备发送出的最小与最大发送电压,而且还规定了一个接收器能够正确地解码所必需的最小电压。对于速率为1.5 Gbps的内部电缆来说,从主机发送至驱动器的发送电压,或者反向发送,其电压范围都是从400到600 mV。考虑到电缆与连接器的信号损失,接收器必须能够对325与600 mV之间的电压进行解码。
考虑到电缆上任何额外的损失,使用2米电缆的最小发送电压将从400提高到500 mV,同时,最小的接收器灵敏度则进一步降低到240 mV。这些改变用以适应在信号通路内较长的电缆或者额外的连接器之内的任何额外衰减。应该指出,当信号传输速
串行ATA主机连接
想象一个设计用于支持串行ATA接口的定制外部磁盘驱动器非常简单,而如何将一个外部串行ATA与主机连接的问题就更为容易。如上所述,许多最初的芯片组与分散的控制器设计没有能力直接支持一个外部驱动器附加装置,尽管第二代设计很可能增加这些能力。因此,对于外部互连,将需要使用一
- 数字信号处理(DSP)应用系统中的低功耗设计(05-02)
- SHARC引领第四代通用DSP高端应用潮流(09-27)
- 在应用可编程测控网络设计(03-15)
- 基于dsPIC33F系列单片机的应用程序升级方法(04-03)
- 采用混合时钟模式提高Linux时钟精度的方法(05-10)
- MSP430低功耗原理及其在海温测量中的应用(06-06)
